A comprehensive survey of federated transfer learning: challenges, methods and applications

W Guo, F Zhuang, X Zhang, Y Tong, J Dong - Frontiers of Computer …, 2024 - Springer
Federated learning (FL) is a novel distributed machine learning paradigm that enables
participants to collaboratively train a centralized model with privacy preservation by …

Federated learning for generalization, robustness, fairness: A survey and benchmark

W Huang, M Ye, Z Shi, G Wan, H Li… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …

Rethinking federated learning with domain shift: A prototype view

W Huang, M Ye, Z Shi, H Li, B Du - 2023 IEEE/CVF Conference …, 2023 - ieeexplore.ieee.org
Federated learning shows a bright promise as a privacy-preserving collaborative learning
technique. However, prevalent solutions mainly focus on all private data sampled from the …

A collective AI via lifelong learning and sharing at the edge

A Soltoggio, E Ben-Iwhiwhu, V Braverman… - Nature Machine …, 2024 - nature.com
One vision of a future artificial intelligence (AI) is where many separate units can learn
independently over a lifetime and share their knowledge with each other. The synergy …

Feddisco: Federated learning with discrepancy-aware collaboration

R Ye, M Xu, J Wang, C Xu, S Chen… - … on Machine Learning, 2023 - proceedings.mlr.press
This work considers the category distribution heterogeneity in federated learning. This issue
is due to biased labeling preferences at multiple clients and is a typical setting of data …

Fedseg: Class-heterogeneous federated learning for semantic segmentation

J Miao, Z Yang, L Fan, Y Yang - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Federated Learning (FL) is a distributed learning paradigm that collaboratively learns a
global model across multiple clients with data privacy-preserving. Although many FL …

Robust heterogeneous federated learning under data corruption

X Fang, M Ye, X Yang - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
Abstract Model heterogeneous federated learning is a realistic and challenging problem.
However, due to the limitations of data collection, storage, and transmission conditions, as …

Specificity-preserving federated learning for MR image reconstruction

CM Feng, Y Yan, S Wang, Y Xu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Federated learning (FL) can be used to improve data privacy and efficiency in magnetic
resonance (MR) image reconstruction by enabling multiple institutions to collaborate without …

Fedclip: Fast generalization and personalization for clip in federated learning

W Lu, X Hu, J Wang, X **e - arxiv preprint arxiv:2302.13485, 2023 - arxiv.org
Federated learning (FL) has emerged as a new paradigm for privacy-preserving
computation in recent years. Unfortunately, FL faces two critical challenges that hinder its …

Towards instance-adaptive inference for federated learning

CM Feng, K Yu, N Liu, X Xu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to
learn a powerful global model by aggregating local training. However, the performance of …