Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR

A Tropsha, O Isayev, A Varnek, G Schneider… - Nature Reviews Drug …, 2024 - nature.com
Quantitative structure–activity relationship (QSAR) modelling, an approach that was
introduced 60 years ago, is widely used in computer-aided drug design. In recent years …

Machine learning-aided generative molecular design

Y Du, AR Jamasb, J Guo, T Fu, C Harris… - Nature Machine …, 2024 - nature.com
Abstract Machine learning has provided a means to accelerate early-stage drug discovery
by combining molecule generation and filtering steps in a single architecture that leverages …

Foundational challenges in assuring alignment and safety of large language models

U Anwar, A Saparov, J Rando, D Paleka… - arxiv preprint arxiv …, 2024 - arxiv.org
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …

Can language models be used for real-world urban-delivery route optimization?

Y Liu, F Wu, Z Liu, K Wang, F Wang, X Qu - The Innovation, 2023 - cell.com
Language models have contributed to breakthroughs in interdisciplinary research, such as
protein design and molecular dynamics understanding. In this study, we reveal that beyond …

Machine learning in preclinical drug discovery

DB Catacutan, J Alexander, A Arnold… - Nature Chemical …, 2024 - nature.com
Drug-discovery and drug-development endeavors are laborious, costly and time consuming.
These programs can take upward of 12 years and cost US $2.5 billion, with a failure rate of …

Prospective de novo drug design with deep interactome learning

K Atz, L Cotos, C Isert, M Håkansson, D Focht… - Nature …, 2024 - nature.com
De novo drug design aims to generate molecules from scratch that possess specific
chemical and pharmacological properties. We present a computational approach utilizing …

Invalid SMILES are beneficial rather than detrimental to chemical language models

MA Skinnider - Nature Machine Intelligence, 2024 - nature.com
Generative machine learning models have attracted intense interest for their ability to
sample novel molecules with desired chemical or biological properties. Among these …

Structure-based drug design with geometric deep learning

C Isert, K Atz, G Schneider - Current Opinion in Structural Biology, 2023 - Elsevier
Abstract Structure-based drug design uses three-dimensional geometric information of
macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric …

Pocketflow is a data-and-knowledge-driven structure-based molecular generative model

Y Jiang, G Zhang, J You, H Zhang, R Yao… - Nature Machine …, 2024 - nature.com
Deep learning-based molecular generation has extensive applications in many fields,
particularly drug discovery. However, the majority of current deep generative models are …

Artificial intelligence for natural product drug discovery

MW Mullowney, KR Duncan, SS Elsayed… - Nature Reviews Drug …, 2023 - nature.com
Developments in computational omics technologies have provided new means to access
the hidden diversity of natural products, unearthing new potential for drug discovery. In …