A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities

Y Song, T Wang, P Cai, SK Mondal… - ACM Computing Surveys, 2023 - dl.acm.org
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …

Learning from few examples: A summary of approaches to few-shot learning

A Parnami, M Lee - arxiv preprint arxiv:2203.04291, 2022 - arxiv.org
Few-Shot Learning refers to the problem of learning the underlying pattern in the data just
from a few training samples. Requiring a large number of data samples, many deep learning …

Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference

SX Hu, D Li, J Stühmer, M Kim… - Proceedings of the …, 2022 - openaccess.thecvf.com
Few-shot learning (FSL) is an important and topical problem in computer vision that has
motivated extensive research into numerous methods spanning from sophisticated meta …

Joint distribution matters: Deep brownian distance covariance for few-shot classification

J **e, F Long, J Lv, Q Wang… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Few-shot classification is a challenging problem as only very few training examples are
given for each new task. One of the effective research lines to address this challenge …

Fsce: Few-shot object detection via contrastive proposal encoding

B Sun, B Li, S Cai, Y Yuan… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Emerging interests have been brought to recognize previously unseen objects given very
few training examples, known as few-shot object detection (FSOD). Recent researches …

Relational embedding for few-shot classification

D Kang, H Kwon, J Min, M Cho - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We propose to address the problem of few-shot classification by meta-learning" what to
observe" and" where to attend" in a relational perspective. Our method leverages relational …

Meta-learning in neural networks: A survey

T Hospedales, A Antoniou, P Micaelli… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …

Knowledge-guided semantic transfer network for few-shot image recognition

Z Li, H Tang, Z Peng, GJ Qi… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Deep learning-based models have been shown to outperform human beings in many
computer vision tasks with massive available labeled training data in learning. However …

Rethinking few-shot image classification: a good embedding is all you need?

Y Tian, Y Wang, D Krishnan, JB Tenenbaum… - Computer Vision–ECCV …, 2020 - Springer
The focus of recent meta-learning research has been on the development of learning
algorithms that can quickly adapt to test time tasks with limited data and low computational …

Deepemd: Few-shot image classification with differentiable earth mover's distance and structured classifiers

C Zhang, Y Cai, G Lin, C Shen - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
In this paper, we address the few-shot classification task from a new perspective of optimal
matching between image regions. We adopt the Earth Mover's Distance (EMD) as a metric to …