From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
A survey of explainable artificial intelligence for smart cities
The emergence of Explainable Artificial Intelligence (XAI) has enhanced the lives of humans
and envisioned the concept of smart cities using informed actions, enhanced user …
and envisioned the concept of smart cities using informed actions, enhanced user …
Foundational challenges in assuring alignment and safety of large language models
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …
language models (LLMs). These challenges are organized into three different categories …
Explanations can reduce overreliance on ai systems during decision-making
Prior work has identified a resilient phenomenon that threatens the performance of human-
AI decision-making teams: overreliance, when people agree with an AI, even when it is …
AI decision-making teams: overreliance, when people agree with an AI, even when it is …
Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond
The evaluation of explanation methods is a research topic that has not yet been explored
deeply, however, since explainability is supposed to strengthen trust in artificial intelligence …
deeply, however, since explainability is supposed to strengthen trust in artificial intelligence …
Does the whole exceed its parts? the effect of ai explanations on complementary team performance
Many researchers motivate explainable AI with studies showing that human-AI team
performance on decision-making tasks improves when the AI explains its recommendations …
performance on decision-making tasks improves when the AI explains its recommendations …
Towards a science of human-ai decision making: a survey of empirical studies
As AI systems demonstrate increasingly strong predictive performance, their adoption has
grown in numerous domains. However, in high-stakes domains such as criminal justice and …
grown in numerous domains. However, in high-stakes domains such as criminal justice and …
Human-centered explainable ai (xai): From algorithms to user experiences
In recent years, the field of explainable AI (XAI) has produced a vast collection of algorithms,
providing a useful toolbox for researchers and practitioners to build XAI applications. With …
providing a useful toolbox for researchers and practitioners to build XAI applications. With …
Explainable deep learning: A field guide for the uninitiated
Deep neural networks (DNNs) are an indispensable machine learning tool despite the
difficulty of diagnosing what aspects of a model's input drive its decisions. In countless real …
difficulty of diagnosing what aspects of a model's input drive its decisions. In countless real …
Towards a science of human-AI decision making: An overview of design space in empirical human-subject studies
AI systems are adopted in numerous domains due to their increasingly strong predictive
performance. However, in high-stakes domains such as criminal justice and healthcare, full …
performance. However, in high-stakes domains such as criminal justice and healthcare, full …