Data-driven modeling for unsteady aerodynamics and aeroelasticity
Aerodynamic modeling plays an important role in multiphysics and design problems, in
addition to experiment and numerical simulation, due to its low-dimensional representation …
addition to experiment and numerical simulation, due to its low-dimensional representation …
Data-driven aerospace engineering: reframing the industry with machine learning
Data science, and machine learning in particular, is rapidly transforming the scientific and
industrial landscapes. The aerospace industry is poised to capitalize on big data and …
industrial landscapes. The aerospace industry is poised to capitalize on big data and …
[書籍][B] Data-driven science and engineering: Machine learning, dynamical systems, and control
SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
Modal analysis of fluid flows: Applications and outlook
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
[書籍][B] Dynamic mode decomposition: data-driven modeling of complex systems
The integration of data and scientific computation is driving a paradigm shift across the
engineering, natural, and physical sciences. Indeed, there exists an unprecedented …
engineering, natural, and physical sciences. Indeed, there exists an unprecedented …
Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns
Optimal sensor and actuator placement is an important unsolved problem in control theory.
Nearly every downstream control decision is affected by these sensor and actuator …
Nearly every downstream control decision is affected by these sensor and actuator …
Closed-loop turbulence control: Progress and challenges
Closed-loop turbulence control is a critical enabler of aerodynamic drag reduction, lift
increase, mixing enhancement, and noise reduction. Current and future applications have …
increase, mixing enhancement, and noise reduction. Current and future applications have …
A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses
Full scale aerodynamic wind tunnel testing, numerical simulation of high dimensional (full-
order) aerodynamic models or flight testing are some of the fundamental but complex steps …
order) aerodynamic models or flight testing are some of the fundamental but complex steps …
Nonlinear model reduction via discrete empirical interpolation
A dimension reduction method called discrete empirical interpolation is proposed and
shown to dramatically reduce the computational complexity of the popular proper orthogonal …
shown to dramatically reduce the computational complexity of the popular proper orthogonal …
Shallow neural networks for fluid flow reconstruction with limited sensors
In many applications, it is important to reconstruct a fluid flow field, or some other high-
dimensional state, from limited measurements and limited data. In this work, we propose a …
dimensional state, from limited measurements and limited data. In this work, we propose a …