Data-driven modeling for unsteady aerodynamics and aeroelasticity

J Kou, W Zhang - Progress in Aerospace Sciences, 2021 - Elsevier
Aerodynamic modeling plays an important role in multiphysics and design problems, in
addition to experiment and numerical simulation, due to its low-dimensional representation …

Data-driven aerospace engineering: reframing the industry with machine learning

SL Brunton, J Nathan Kutz, K Manohar, AY Aravkin… - AIAA Journal, 2021 - arc.aiaa.org
Data science, and machine learning in particular, is rapidly transforming the scientific and
industrial landscapes. The aerospace industry is poised to capitalize on big data and …

[書籍][B] Data-driven science and engineering: Machine learning, dynamical systems, and control

SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …

Modal analysis of fluid flows: Applications and outlook

K Taira, MS Hemati, SL Brunton, Y Sun, K Duraisamy… - AIAA journal, 2020 - arc.aiaa.org
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …

[書籍][B] Dynamic mode decomposition: data-driven modeling of complex systems

The integration of data and scientific computation is driving a paradigm shift across the
engineering, natural, and physical sciences. Indeed, there exists an unprecedented …

Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns

K Manohar, BW Brunton, JN Kutz… - IEEE Control Systems …, 2018 - ieeexplore.ieee.org
Optimal sensor and actuator placement is an important unsolved problem in control theory.
Nearly every downstream control decision is affected by these sensor and actuator …

Closed-loop turbulence control: Progress and challenges

SL Brunton, BR Noack - Applied Mechanics …, 2015 - asmedigitalcollection.asme.org
Closed-loop turbulence control is a critical enabler of aerodynamic drag reduction, lift
increase, mixing enhancement, and noise reduction. Current and future applications have …

A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses

R Yondo, E Andrés, E Valero - Progress in aerospace sciences, 2018 - Elsevier
Full scale aerodynamic wind tunnel testing, numerical simulation of high dimensional (full-
order) aerodynamic models or flight testing are some of the fundamental but complex steps …

Nonlinear model reduction via discrete empirical interpolation

S Chaturantabut, DC Sorensen - SIAM Journal on Scientific Computing, 2010 - SIAM
A dimension reduction method called discrete empirical interpolation is proposed and
shown to dramatically reduce the computational complexity of the popular proper orthogonal …

Shallow neural networks for fluid flow reconstruction with limited sensors

NB Erichson, L Mathelin, Z Yao… - … of the Royal …, 2020 - royalsocietypublishing.org
In many applications, it is important to reconstruct a fluid flow field, or some other high-
dimensional state, from limited measurements and limited data. In this work, we propose a …