Human motion trajectory prediction: A survey

A Rudenko, L Palmieri, M Herman… - … Journal of Robotics …, 2020 - journals.sagepub.com
With growing numbers of intelligent autonomous systems in human environments, the ability
of such systems to perceive, understand, and anticipate human behavior becomes …

Review of pedestrian trajectory prediction methods: Comparing deep learning and knowledge-based approaches

R Korbmacher, A Tordeux - IEEE Transactions on Intelligent …, 2022 - ieeexplore.ieee.org
In crowd scenarios, predicting trajectories of pedestrians is a complex and challenging task
depending on many external factors. The topology of the scene and the interactions …

Densetnt: End-to-end trajectory prediction from dense goal sets

J Gu, C Sun, H Zhao - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Due to the stochasticity of human behaviors, predicting the future trajectories of road agents
is challenging for autonomous driving. Recently, goal-based multi-trajectory prediction …

Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data

T Salzmann, B Ivanovic, P Chakravarty… - Computer Vision–ECCV …, 2020 - Springer
Abstract Reasoning about human motion is an important prerequisite to safe and socially-
aware robotic navigation. As a result, multi-agent behavior prediction has become a core …

Mp3: A unified model to map, perceive, predict and plan

S Casas, A Sadat, R Urtasun - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
High-definition maps (HD maps) are a key component of most modern self-driving systems
due to their valuable semantic and geometric information. Unfortunately, building HD maps …

Home: Heatmap output for future motion estimation

T Gilles, S Sabatini, D Tsishkou… - 2021 IEEE …, 2021 - ieeexplore.ieee.org
In this paper, we propose HOME, a framework tackling the motion forecasting problem with
an image output representing the probability distribution of the agent's future location. This …

Perceive, predict, and plan: Safe motion planning through interpretable semantic representations

A Sadat, S Casas, M Ren, X Wu, P Dhawan… - Computer Vision–ECCV …, 2020 - Springer
In this paper we propose a novel end-to-end learnable network that performs joint
perception, prediction and motion planning for self-driving vehicles and produces …

Semantics for robotic map**, perception and interaction: A survey

S Garg, N Sünderhauf, F Dayoub… - … and Trends® in …, 2020 - nowpublishers.com
For robots to navigate and interact more richly with the world around them, they will likely
require a deeper understanding of the world in which they operate. In robotics and related …

Implicit latent variable model for scene-consistent motion forecasting

S Casas, C Gulino, S Suo, K Luo, R Liao… - Computer Vision–ECCV …, 2020 - Springer
In order to plan a safe maneuver an autonomous vehicle must accurately perceive its
environment, and understand the interactions among traffic participants. In this paper, we …

Lookout: Diverse multi-future prediction and planning for self-driving

A Cui, S Casas, A Sadat, R Liao… - Proceedings of the …, 2021 - openaccess.thecvf.com
In this paper, we present LookOut, a novel autonomy system that perceives the environment,
predicts a diverse set of futures of how the scene might unroll and estimates the trajectory of …