A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt
Recently, ChatGPT, along with DALL-E-2 and Codex, has been gaining significant attention
from society. As a result, many individuals have become interested in related resources and …
from society. As a result, many individuals have become interested in related resources and …
A comprehensive survey on pretrained foundation models: A history from bert to chatgpt
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
Scaling up gans for text-to-image synthesis
The recent success of text-to-image synthesis has taken the world by storm and captured the
general public's imagination. From a technical standpoint, it also marked a drastic change in …
general public's imagination. From a technical standpoint, it also marked a drastic change in …
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …
large amount of data to achieve exceptional performance. Unfortunately, many applications …
Photorealistic text-to-image diffusion models with deep language understanding
We present Imagen, a text-to-image diffusion model with an unprecedented degree of
photorealism and a deep level of language understanding. Imagen builds on the power of …
photorealism and a deep level of language understanding. Imagen builds on the power of …
Graph neural networks for materials science and chemistry
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …
and materials science, being used to predict materials properties, accelerate simulations …
[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches
A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …
Shifting machine learning for healthcare from development to deployment and from models to data
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …
the automation of physician tasks as well as enhancements in clinical capabilities and …
A review of medical image data augmentation techniques for deep learning applications
Research in artificial intelligence for radiology and radiotherapy has recently become
increasingly reliant on the use of deep learning‐based algorithms. While the performance of …
increasingly reliant on the use of deep learning‐based algorithms. While the performance of …
Image super-resolution via iterative refinement
We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3
adapts denoising diffusion probabilistic models (Ho et al. 2020),(Sohl-Dickstein et al. 2015) …
adapts denoising diffusion probabilistic models (Ho et al. 2020),(Sohl-Dickstein et al. 2015) …