Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Exploring catalytic reaction networks with machine learning

JT Margraf, H Jung, C Scheurer, K Reuter - Nature Catalysis, 2023 - nature.com
Chemical reaction networks form the heart of microkinetic models, which are one of the key
tools available for gaining detailed mechanistic insight into heterogeneous catalytic …

Data‐driven machine learning for understanding surface structures of heterogeneous catalysts

H Li, Y Jiao, K Davey, SZ Qiao - … Chemie International Edition, 2023 - Wiley Online Library
The design of heterogeneous catalysts is necessarily surface‐focused, generally achieved
via optimization of adsorption energy and microkinetic modelling. A prerequisite is to ensure …

[HTML][HTML] Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation

R Ding, J Chen, Y Chen, J Liu, Y Bando… - Chemical Society …, 2024 - pubs.rsc.org
Machine learning (ML) is rapidly emerging as a pivotal tool in the hydrogen energy industry
for the creation and optimization of electrocatalysts, which enhance key electrochemical …

Toward excellence of electrocatalyst design by emerging descriptor‐oriented machine learning

J Liu, W Luo, L Wang, J Zhang, XZ Fu… - Advanced Functional …, 2022 - Wiley Online Library
Abstract Machine learning (ML) is emerging as a powerful tool for identifying quantitative
structure–activity relationships to accelerate electrocatalyst design by learning from historic …

How robust are modern graph neural network potentials in long and hot molecular dynamics simulations?

S Stocker, J Gasteiger, F Becker… - Machine Learning …, 2022 - iopscience.iop.org
Graph neural networks (GNNs) have emerged as a powerful machine learning approach for
the prediction of molecular properties. In particular, recently proposed advanced GNN …

Machine learning force fields for molecular liquids: Ethylene Carbonate/Ethyl Methyl Carbonate binary solvent

IB Magdău, DJ Arismendi-Arrieta, HE Smith… - npj Computational …, 2023 - nature.com
Highly accurate ab initio molecular dynamics (MD) methods are the gold standard for
studying molecular mechanisms in the condensed phase, however, they are too expensive …

Construction of high accuracy machine learning interatomic potential for surface/interface of nanomaterials—A review

K Wan, J He, X Shi - Advanced Materials, 2024 - Wiley Online Library
The inherent discontinuity and unique dimensional attributes of nanomaterial surfaces and
interfaces bestow them with various exceptional properties. These properties, however, also …

On the mechanistic complexity of oxygen evolution: potential-dependent switching of the mechanism at the volcano apex

KS Exner - Materials Horizons, 2023 - pubs.rsc.org
The anodic four-electron oxygen evolution reaction (OER) corresponds to the limiting
process in acidic or alkaline electrolyzers to produce gaseous hydrogen at the cathode of …

Science‐Driven Atomistic Machine Learning

JT Margraf - Angewandte Chemie International Edition, 2023 - Wiley Online Library
Abstract Machine learning (ML) algorithms are currently emerging as powerful tools in all
areas of science. Conventionally, ML is understood as a fundamentally data‐driven …