Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
Quantum machine learning: from physics to software engineering
Quantum machine learning is a rapidly growing field at the intersection of quantum
technology and artificial intelligence. This review provides a two-fold overview of several key …
technology and artificial intelligence. This review provides a two-fold overview of several key …
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …
parameterized quantum circuit on a training data set, and subsequently making predictions …
[HTML][HTML] Quantum machine learning beyond kernel methods
Abstract Machine learning algorithms based on parametrized quantum circuits are prime
candidates for near-term applications on noisy quantum computers. In this direction, various …
candidates for near-term applications on noisy quantum computers. In this direction, various …
Shadows of quantum machine learning
Quantum machine learning is often highlighted as one of the most promising practical
applications for which quantum computers could provide a computational advantage …
applications for which quantum computers could provide a computational advantage …
A survey on the complexity of learning quantum states
Quantum learning theory is a new and very active area of research at the intersection of
quantum computing and machine learning. Important breakthroughs in the past two years …
quantum computing and machine learning. Important breakthroughs in the past two years …
Exponential concentration in quantum kernel methods
Abstract Kernel methods in Quantum Machine Learning (QML) have recently gained
significant attention as a potential candidate for achieving a quantum advantage in data …
significant attention as a potential candidate for achieving a quantum advantage in data …
Out-of-distribution generalization for learning quantum dynamics
Generalization bounds are a critical tool to assess the training data requirements of
Quantum Machine Learning (QML). Recent work has established guarantees for in …
Quantum Machine Learning (QML). Recent work has established guarantees for in …
Exponential concentration and untrainability in quantum kernel methods
Kernel methods in Quantum Machine Learning (QML) have recently gained significant
attention as a potential candidate for achieving a quantum advantage in data analysis …
attention as a potential candidate for achieving a quantum advantage in data analysis …
Understanding quantum machine learning also requires rethinking generalization
Quantum machine learning models have shown successful generalization performance
even when trained with few data. In this work, through systematic randomization …
even when trained with few data. In this work, through systematic randomization …