Challenges and opportunities in quantum machine learning

M Cerezo, G Verdon, HY Huang, L Cincio… - Nature Computational …, 2022 - nature.com
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …

Quantum machine learning: from physics to software engineering

A Melnikov, M Kordzanganeh, A Alodjants… - Advances in Physics …, 2023 - Taylor & Francis
Quantum machine learning is a rapidly growing field at the intersection of quantum
technology and artificial intelligence. This review provides a two-fold overview of several key …

Generalization in quantum machine learning from few training data

MC Caro, HY Huang, M Cerezo, K Sharma… - Nature …, 2022 - nature.com
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …

[HTML][HTML] Quantum machine learning beyond kernel methods

S Jerbi, LJ Fiderer, H Poulsen Nautrup… - Nature …, 2023 - nature.com
Abstract Machine learning algorithms based on parametrized quantum circuits are prime
candidates for near-term applications on noisy quantum computers. In this direction, various …

Shadows of quantum machine learning

S Jerbi, C Gyurik, SC Marshall, R Molteni… - Nature …, 2024 - nature.com
Quantum machine learning is often highlighted as one of the most promising practical
applications for which quantum computers could provide a computational advantage …

A survey on the complexity of learning quantum states

A Anshu, S Arunachalam - Nature Reviews Physics, 2024 - nature.com
Quantum learning theory is a new and very active area of research at the intersection of
quantum computing and machine learning. Important breakthroughs in the past two years …

Exponential concentration in quantum kernel methods

S Thanasilp, S Wang, M Cerezo, Z Holmes - Nature Communications, 2024 - nature.com
Abstract Kernel methods in Quantum Machine Learning (QML) have recently gained
significant attention as a potential candidate for achieving a quantum advantage in data …

Out-of-distribution generalization for learning quantum dynamics

MC Caro, HY Huang, N Ezzell, J Gibbs… - Nature …, 2023 - nature.com
Generalization bounds are a critical tool to assess the training data requirements of
Quantum Machine Learning (QML). Recent work has established guarantees for in …

Exponential concentration and untrainability in quantum kernel methods

S Thanasilp, S Wang, M Cerezo, Z Holmes - arxiv preprint arxiv …, 2022 - arxiv.org
Kernel methods in Quantum Machine Learning (QML) have recently gained significant
attention as a potential candidate for achieving a quantum advantage in data analysis …

Understanding quantum machine learning also requires rethinking generalization

E Gil-Fuster, J Eisert, C Bravo-Prieto - Nature Communications, 2024 - nature.com
Quantum machine learning models have shown successful generalization performance
even when trained with few data. In this work, through systematic randomization …