Variational quantum algorithms

M Cerezo, A Arrasmith, R Babbush… - Nature Reviews …, 2021 - nature.com
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …

Noisy intermediate-scale quantum algorithms

K Bharti, A Cervera-Lierta, TH Kyaw, T Haug… - Reviews of Modern …, 2022 - APS
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …

Quantum error mitigation

Z Cai, R Babbush, SC Benjamin, S Endo… - Reviews of Modern …, 2023 - APS
For quantum computers to successfully solve real-world problems, it is necessary to tackle
the challenge of noise: the errors that occur in elementary physical components due to …

Hybrid quantum-classical algorithms and quantum error mitigation

S Endo, Z Cai, SC Benjamin, X Yuan - Journal of the Physical …, 2021 - journals.jps.jp
Quantum computers can exploit a Hilbert space whose dimension increases exponentially
with the number of qubits. In experiment, quantum supremacy has recently been achieved …

Quantum-centric supercomputing for materials science: A perspective on challenges and future directions

Y Alexeev, M Amsler, MA Barroca, S Bassini… - Future Generation …, 2024 - Elsevier
Computational models are an essential tool for the design, characterization, and discovery
of novel materials. Computationally hard tasks in materials science stretch the limits of …

Exponential error suppression for near-term quantum devices

B Koczor - Physical Review X, 2021 - APS
Suppressing noise in physical systems is of fundamental importance. As quantum
computers mature, quantum error correcting codes (QECs) will be adopted in order to …

Scaling silicon-based quantum computing using CMOS technology

MF Gonzalez-Zalba, S De Franceschi, E Charbon… - Nature …, 2021 - nature.com
As quantum processors grow in complexity, attention is moving to the scaling prospects of
the entire quantum computing system, including the classical support hardware. Recent …

Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer

S Stanisic, JL Bosse, FM Gambetta, RA Santos… - Nature …, 2022 - nature.com
The famous, yet unsolved, Fermi-Hubbard model for strongly-correlated electronic systems
is a prominent target for quantum computers. However, accurately representing the Fermi …

Strategies for solving the Fermi-Hubbard model on near-term quantum computers

C Cade, L Mineh, A Montanaro, S Stanisic - Physical Review B, 2020 - APS
The Fermi-Hubbard model is of fundamental importance in condensed-matter physics, yet is
extremely challenging to solve numerically. Finding the ground state of the Hubbard model …

How will quantum computers provide an industrially relevant computational advantage in quantum chemistry?

VE Elfving, BW Broer, M Webber, J Gavartin… - arxiv preprint arxiv …, 2020 - arxiv.org
Numerous reports claim that quantum advantage, which should emerge as a direct
consequence of the advent of quantum computers, will herald a new era of chemical …