A review of generalized zero-shot learning methods

F Pourpanah, M Abdar, Y Luo, X Zhou… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples
under the condition that some output classes are unknown during supervised learning. To …

Language in a bottle: Language model guided concept bottlenecks for interpretable image classification

Y Yang, A Panagopoulou, S Zhou… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Concept Bottleneck Models (CBM) are inherently interpretable models that factor
model decisions into human-readable concepts. They allow people to easily understand …

Rethinking semantic segmentation: A prototype view

T Zhou, W Wang, E Konukoglu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Prevalent semantic segmentation solutions, despite their different network designs (FCN
based or attention based) and mask decoding strategies (parametric softmax based or pixel …

Rethinking federated learning with domain shift: A prototype view

W Huang, M Ye, Z Shi, H Li, B Du - 2023 IEEE/CVF Conference …, 2023 - ieeexplore.ieee.org
Federated learning shows a bright promise as a privacy-preserving collaborative learning
technique. However, prevalent solutions mainly focus on all private data sampled from the …

Towards zero-shot learning: A brief review and an attention-based embedding network

GS **e, Z Zhang, H **ong, L Shao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Zero-shot learning (ZSL), an emerging topic in recent years, targets at distinguishing unseen
class images by taking images from seen classes for training the classifier. Existing works …

Visual recognition with deep nearest centroids

W Wang, C Han, T Zhou, D Liu - arxiv preprint arxiv:2209.07383, 2022 - arxiv.org
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective
network for large-scale visual recognition, by revisiting Nearest Centroids, one of the most …

Msdn: Mutually semantic distillation network for zero-shot learning

S Chen, Z Hong, GS **e, W Yang… - Proceedings of the …, 2022 - openaccess.thecvf.com
The key challenge of zero-shot learning (ZSL) is how to infer the latent semantic knowledge
between visual and attribute features on seen classes, and thus achieving a desirable …

Improving zero-shot generalization for clip with synthesized prompts

Z Wang, J Liang, R He, N Xu… - Proceedings of the …, 2023 - openaccess.thecvf.com
With the growing interest in pretrained vision-language models like CLIP, recent research
has focused on adapting these models to downstream tasks. Despite achieving promising …

Hsva: Hierarchical semantic-visual adaptation for zero-shot learning

S Chen, G **e, Y Liu, Q Peng, B Sun… - Advances in …, 2021 - proceedings.neurips.cc
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring
semantic knowledge from seen classes to unseen ones. Typically, to guarantee desirable …

I2mvformer: Large language model generated multi-view document supervision for zero-shot image classification

MF Naeem, MGZA Khan, Y **an… - Proceedings of the …, 2023 - openaccess.thecvf.com
Recent works have shown that unstructured text (documents) from online sources can serve
as useful auxiliary information for zero-shot image classification. However, these methods …