[HTML][HTML] Partition algebras

T Halverson, A Ram - European Journal of Combinatorics, 2005 - Elsevier
The partition algebra CAk (n) is the centralizer algebra of Sn acting on the k-fold tensor
product V⊗ k of its n-dimensional permutation representation V. The partition algebra CAk+ …

Partition algebras and the invariant theory of the symmetric group

G Benkart, T Halverson - Recent trends in algebraic combinatorics, 2019 - Springer
The symmetric group S _n and the partition algebra P _k (n) centralize one another in their
actions on the k-fold tensor power M _n^ ⊗ k of the n-dimensional permutation module M _n …

[HTML][HTML] A groupoid approach to regular⁎-semigroups

J East, PAA Muhammed - Advances in Mathematics, 2024 - Elsevier
In this paper we develop a new groupoid-based structure theory for the class of regular⁎-
semigroups. This class occupies something of a 'sweet spot'between the important classes …

The partition algebra and the Potts model transfer matrixspectrum in high dimensions

PP Martin - Journal of Physics A: Mathematical and General, 2000 - iopscience.iop.org
We construct generalizations P mn (Q) of the partition algebra P n (Q)(Martin PP 1996 J.
Algebra 183 319), facilitating a representation theoretic approach to the n-site transfer matrix …

Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups

G Benkart, T Halverson, N Harman - Journal of Algebraic Combinatorics, 2017 - Springer
The partition algebra P _k (n) P k (n) and the symmetric group S _n S n are in Schur–Weyl
duality on the k-fold tensor power M _n^ ⊗ k M n⊗ k of the permutation module M _n M n of S …

Partition algebras with and the fundamental theorems of invariant theory for the symmetric group

G Benkart, T Halverson - Journal of the London Mathematical …, 2019 - Wiley Online Library
Assume M n is the n‐dimensional permutation module for the symmetric group S n, and let
M n⊗ k be its k‐fold tensor power. The partition algebra P k (n) maps surjectively onto the …

An insertion algorithm on multiset partitions with applications to diagram algebras

L Colmenarejo, R Orellana, F Saliola, A Schilling… - Journal of Algebra, 2020 - Elsevier
Abstract We generalize the Robinson–Schensted–Knuth algorithm to the insertion of two
row arrays of multisets. This generalization leads to new enumerative results that have …

Identities for vacillating tableaux via growth diagrams

C Krattenthaler - arxiv preprint arxiv:2304.07657, 2023 - arxiv.org
arxiv:2304.07657v2 [math.CO] 29 Dec 2023 Page 1 arxiv:2304.07657v2 [math.CO] 29 Dec
2023 Identities for vacillating tableaux via growth diagrams C. Krattenthaler Fakultät für …

RSK insertion for set partitions and diagram algebras

T Halverson, T Lewandowski - arxiv preprint math/0507026, 2005 - arxiv.org
We give combinatorial proofs of two identities from the representation theory of the partition
algebra $ C A_k (n), n\ge 2k $. The first is $ n^ k=\sum_\lambda f^\lambda m_k^\lambda …

Cellular subalgebras of the partition algebra

T Scrimshaw - Journal of Combinatorial Algebra, 2023 - ems.press
We describe various diagram algebras and their representation theory using cellular
algebras of Graham and Lehrer and the decomposition into half diagrams. In particular, we …