Remote sensing for agricultural applications: A meta-review

M Weiss, F Jacob, G Duveiller - Remote sensing of environment, 2020 - Elsevier
Agriculture provides humanity with food, fibers, fuel, and raw materials that are paramount
for human livelihood. Today, this role must be satisfied within a context of environmental …

[HTML][HTML] Unmanned aerial vehicle for remote sensing applications—A review

H Yao, R Qin, X Chen - Remote sensing, 2019 - mdpi.com
The unmanned aerial vehicle (UAV) sensors and platforms nowadays are being used in
almost every application (eg, agriculture, forestry, and mining) that needs observed …

ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data

FI Diakogiannis, F Waldner, P Caccetta… - ISPRS Journal of …, 2020 - Elsevier
Scene understanding of high resolution aerial images is of great importance for the task of
automated monitoring in various remote sensing applications. Due to the large within-class …

Spatial–spectral attention network guided with change magnitude image for land cover change detection using remote sensing images

Z Lv, F Wang, G Cui, JA Benediktsson… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Land cover change detection (LCCD) using remote sensing images (RSIs) plays an
important role in natural disaster evaluation, forest deformation monitoring, and wildfire …

Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective

MD Hossain, D Chen - ISPRS Journal of Photogrammetry and Remote …, 2019 - Elsevier
Image segmentation is a critical and important step in (GEographic) Object-Based Image
Analysis (GEOBIA or OBIA). The final feature extraction and classification in OBIA is highly …

[HTML][HTML] Deep learning for urban land use category classification: A review and experimental assessment

Z Li, B Chen, S Wu, M Su, JM Chen, B Xu - Remote Sensing of …, 2024 - Elsevier
Map** the distribution, pattern, and composition of urban land use categories plays a
valuable role in understanding urban environmental dynamics and facilitating sustainable …

Landslide detection using deep learning and object-based image analysis

O Ghorbanzadeh, H Shahabi, A Crivellari… - Landslides, 2022 - Springer
Recent landslide detection studies have focused on pixel-based deep learning (DL)
approaches. In contrast, intuitive annotation of landslides from satellite imagery is based on …

Land cover change detection techniques: Very-high-resolution optical images: A review

Z Lv, T Liu, JA Benediktsson… - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Land cover change detection (LCCD) with remote sensing images is an important
application of Earth observation data because it provides insights into environmental health …

Change detection from very-high-spatial-resolution optical remote sensing images: Methods, applications, and future directions

D Wen, X Huang, F Bovolo, J Li, X Ke… - … and Remote Sensing …, 2021 - ieeexplore.ieee.org
Change detection is a vibrant area of research in remote sensing. Thanks to increases in the
spatial resolution of remote sensing images, subtle changes at a finer geometrical scale can …

Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A …

X Huang, Y Wang - ISPRS Journal of Photogrammetry and Remote …, 2019 - Elsevier
The Urban heat island (UHI) effect is an increasingly serious problem in urban areas.
Information on the driving forces of intra-urban temperature variation is crucial for …