Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Machine-learned potentials for next-generation matter simulations
The choice of simulation methods in computational materials science is driven by a
fundamental trade-off: bridging large time-and length-scales with highly accurate …
fundamental trade-off: bridging large time-and length-scales with highly accurate …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Spice, a dataset of drug-like molecules and peptides for training machine learning potentials
Abstract Machine learning potentials are an important tool for molecular simulation, but their
development is held back by a shortage of high quality datasets to train them on. We …
development is held back by a shortage of high quality datasets to train them on. We …
Torchmd-net: equivariant transformers for neural network based molecular potentials
The prediction of quantum mechanical properties is historically plagued by a trade-off
between accuracy and speed. Machine learning potentials have previously shown great …
between accuracy and speed. Machine learning potentials have previously shown great …
Extending machine learning beyond interatomic potentials for predicting molecular properties
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …
chemical processes and materials. ML provides a surrogate model trained on a reference …
Computational discovery of transition-metal complexes: from high-throughput screening to machine learning
Transition-metal complexes are attractive targets for the design of catalysts and functional
materials. The behavior of the metal–organic bond, while very tunable for achieving target …
materials. The behavior of the metal–organic bond, while very tunable for achieving target …
Machine learning for molecular simulation
Machine learning (ML) is transforming all areas of science. The complex and time-
consuming calculations in molecular simulations are particularly suitable for an ML …
consuming calculations in molecular simulations are particularly suitable for an ML …
MACE-OFF23: Transferable machine learning force fields for organic molecules
Classical empirical force fields have dominated biomolecular simulation for over 50 years.
Although widely used in drug discovery, crystal structure prediction, and biomolecular …
Although widely used in drug discovery, crystal structure prediction, and biomolecular …
Machine learning for chemical reactions
M Meuwly - Chemical Reviews, 2021 - ACS Publications
Machine learning (ML) techniques applied to chemical reactions have a long history. The
present contribution discusses applications ranging from small molecule reaction dynamics …
present contribution discusses applications ranging from small molecule reaction dynamics …
Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery
The modular nature of metal–organic frameworks (MOFs) enables synthetic control over
their physical and chemical properties, but it can be difficult to know which MOFs would be …
their physical and chemical properties, but it can be difficult to know which MOFs would be …