[HTML][HTML] Networks beyond pairwise interactions: Structure and dynamics

F Battiston, G Cencetti, I Iacopini, V Latora, M Lucas… - Physics reports, 2020 - Elsevier
The complexity of many biological, social and technological systems stems from the richness
of the interactions among their units. Over the past decades, a variety of complex systems …

Biclustering algorithms for biological data analysis: a survey

SC Madeira, AL Oliveira - IEEE/ACM transactions on …, 2004 - ieeexplore.ieee.org
A large number of clustering approaches have been proposed for the analysis of gene
expression data obtained from microarray experiments. However, the results from the …

Genesis: cluster analysis of microarray data

A Sturn, J Quackenbush, Z Trajanoski - Bioinformatics, 2002 - academic.oup.com
A versatile, platform independent and easy to use Java suite for large-scale gene
expression analysis was developed. Genesis integrates various tools for microarray data …

Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering

HP Kriegel, P Kröger, A Zimek - … on knowledge discovery from data (tkdd …, 2009 - dl.acm.org
As a prolific research area in data mining, subspace clustering and related problems
induced a vast quantity of proposed solutions. However, many publications compare a new …

[PDF][PDF] Machine learning in bioinformatics

P Larranaga, B Calvo, R Santana… - Briefings in …, 2006 - academic.oup.com
This article reviews machine learning methods for bioinformatics. It presents modelling
methods, such as supervised classification, clustering and probabilistic graphical models for …

Advantages and limitations of current network inference methods

R De Smet, K Marchal - Nature Reviews Microbiology, 2010 - nature.com
Network inference, which is the reconstruction of biological networks from high-throughput
data, can provide valuable information about the regulation of gene expression in cells …

FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data

L Fu, E Medico - BMC bioinformatics, 2007 - Springer
Background Data clustering analysis has been extensively applied to extract information
from gene expression profiles obtained with DNA microarrays. To this aim, existing …

The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo

R Bonneau, DJ Reiss, P Shannon, M Facciotti, L Hood… - Genome biology, 2006 - Springer
We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory
interactions, and apply the method to predict a large portion of the regulatory network of the …

[HTML][HTML] Biclustering on expression data: A review

B Pontes, R Giráldez, JS Aguilar-Ruiz - Journal of biomedical informatics, 2015 - Elsevier
Biclustering has become a popular technique for the study of gene expression data,
especially for discovering functionally related gene sets under different subsets of …

Clustering algorithms: their application to gene expression data

J Oyelade, I Isewon, F Oladipupo… - … and Biology insights, 2016 - journals.sagepub.com
Gene expression data hide vital information required to understand the biological process
that takes place in a particular organism in relation to its environment. Deciphering the …