A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection

M **, HY Koh, Q Wen, D Zambon… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …

Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities

M Shaygan, C Meese, W Li, XG Zhao… - … research part C: emerging …, 2022 - Elsevier
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a
critical problem globally, resulting in negative consequences such as lost hours of additional …

Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting

L Han, B Du, L Sun, Y Fu, Y Lv, H **ong - Proceedings of the 27th ACM …, 2021 - dl.acm.org
Dynamic Graph Neural Networks (DGNNs) have become one of the most promising
methods for traffic speed forecasting. However, when adapting DGNNs for traffic speed …

Deep learning for spatio-temporal data mining: A survey

S Wang, J Cao, SY Philip - IEEE transactions on knowledge …, 2020 - ieeexplore.ieee.org
With the fast development of various positioning techniques such as Global Position System
(GPS), mobile devices and remote sensing, spatio-temporal data has become increasingly …

Deep learning on traffic prediction: Methods, analysis, and future directions

X Yin, G Wu, J Wei, Y Shen, H Qi… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic
prediction can assist route planing, guide vehicle dispatching, and mitigate traffic …

A survey on graph representation learning methods

S Khoshraftar, A An - ACM Transactions on Intelligent Systems and …, 2024 - dl.acm.org
Graph representation learning has been a very active research area in recent years. The
goal of graph representation learning is to generate graph representation vectors that …

Understanding private car aggregation effect via spatio-temporal analysis of trajectory data

Z **ao, H Fang, H Jiang, J Bai… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Understanding the private car aggregation effect is conducive to a broad range of
applications, from intelligent transportation management to urban planning. However, this …

Msdr: Multi-step dependency relation networks for spatial temporal forecasting

D Liu, J Wang, S Shang, P Han - Proceedings of the 28th ACM SIGKDD …, 2022 - dl.acm.org
Spatial temporal forecasting plays an important role in improving the quality and
performance of Intelligent Transportation Systems. This task is rather challenging due to the …

Generic dynamic graph convolutional network for traffic flow forecasting

Y Xu, L Han, T Zhu, L Sun, B Du, W Lv - Information Fusion, 2023 - Elsevier
In the field of traffic forecasting, methods based on Graph Convolutional Network (GCN) are
emerging. But existing methods still have limitations due to insufficient sharing patterns …

Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting

J Ye, Z Liu, B Du, L Sun, W Li, Y Fu… - Proceedings of the 28th …, 2022 - dl.acm.org
Recent studies have shown great promise in applying graph neural networks for multivariate
time series forecasting, where the interactions of time series are described as a graph …