Advances in medical image analysis with vision transformers: a comprehensive review

R Azad, A Kazerouni, M Heidari, EK Aghdam… - Medical Image …, 2024 - Elsevier
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …

Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

[HTML][HTML] Transformers in medical image analysis

K He, C Gan, Z Li, I Rekik, Z Yin, W Ji, Y Gao, Q Wang… - Intelligent …, 2023 - Elsevier
Transformers have dominated the field of natural language processing and have recently
made an impact in the area of computer vision. In the field of medical image analysis …

External validation of deep learning algorithms for radiologic diagnosis: a systematic review

AC Yu, B Mohajer, J Eng - Radiology: Artificial Intelligence, 2022 - pubs.rsna.org
Purpose To assess generalizability of published deep learning (DL) algorithms for radiologic
diagnosis. Materials and Methods In this systematic review, the PubMed database was …

Machine-learning-based disease diagnosis: A comprehensive review

MM Ahsan, SA Luna, Z Siddique - Healthcare, 2022 - mdpi.com
Globally, there is a substantial unmet need to diagnose various diseases effectively. The
complexity of the different disease mechanisms and underlying symptoms of the patient …

Breast cancer detection using deep learning: Datasets, methods, and challenges ahead

RA Dar, M Rasool, A Assad - Computers in biology and medicine, 2022 - Elsevier
Breast Cancer (BC) is the most commonly diagnosed cancer and second leading cause of
mortality among women. About 1 in 8 US women (about 13%) will develop invasive BC …

Comparing vision transformers and convolutional neural networks for image classification: A literature review

J Maurício, I Domingues, J Bernardino - Applied Sciences, 2023 - mdpi.com
Transformers are models that implement a mechanism of self-attention, individually
weighting the importance of each part of the input data. Their use in image classification …

[HTML][HTML] Unified focal loss: Generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation

M Yeung, E Sala, CB Schönlieb, L Rundo - Computerized Medical Imaging …, 2022 - Elsevier
Automatic segmentation methods are an important advancement in medical image analysis.
Machine learning techniques, and deep neural networks in particular, are the state-of-the-art …

Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review

EH Houssein, MM Emam, AA Ali… - Expert Systems with …, 2021 - Elsevier
Breast cancer is the second leading cause of death for women, so accurate early detection
can help decrease breast cancer mortality rates. Computer-aided detection allows …

A comprehensive review on breast cancer detection, classification and segmentation using deep learning

B Abhisheka, SK Biswas, B Purkayastha - Archives of Computational …, 2023 - Springer
The incidence and mortality rate of Breast Cancer (BC) are global problems for women, with
over 2.1 million new diagnoses each year worldwide. There is no age range, race, or …