K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data

AM Ikotun, AE Ezugwu, L Abualigah, B Abuhaija… - Information …, 2023 - Elsevier
Advances in recent techniques for scientific data collection in the era of big data allow for the
systematic accumulation of large quantities of data at various data-capturing sites. Similarly …

The k-means Algorithm: A Comprehensive Survey and Performance Evaluation

M Ahmed, R Seraj, SMS Islam - Electronics, 2020 - mdpi.com
The k-means clustering algorithm is considered one of the most powerful and popular data
mining algorithms in the research community. However, despite its popularity, the algorithm …

Expertise-structure and risk-appetite-integrated two-tiered collective opinion generation framework for large-scale group decision making

ZS Chen, X Zhang, RM Rodríguez… - … on Fuzzy Systems, 2022 - ieeexplore.ieee.org
The generation of collective preference assessments occupies a critical position in deriving
accurate and reliable alternative rankings in the context of large-scale group decision …

Machine learning and deep learning in smart manufacturing: The smart grid paradigm

T Kotsiopoulos, P Sarigiannidis, D Ioannidis… - Computer Science …, 2021 - Elsevier
Industry 4.0 is the new industrial revolution. By connecting every machine and activity
through network sensors to the Internet, a huge amount of data is generated. Machine …

[HTML][HTML] How much can k-means be improved by using better initialization and repeats?

P Fränti, S Sieranoja - Pattern Recognition, 2019 - Elsevier
In this paper, we study what are the most important factors that deteriorate the performance
of the k-means algorithm, and how much this deterioration can be overcome either by using …

K-means properties on six clustering benchmark datasets

P Fränti, S Sieranoja - Applied intelligence, 2018 - Springer
This paper has two contributions. First, we introduce a clustering basic benchmark. Second,
we study the performance of k-means using this benchmark. Specifically, we measure how …

A comparative study of efficient initialization methods for the k-means clustering algorithm

ME Celebi, HA Kingravi, PA Vela - Expert systems with applications, 2013 - Elsevier
K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately,
due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of …

Machine learning and radiology

S Wang, RM Summers - Medical image analysis, 2012 - Elsevier
In this paper, we give a short introduction to machine learning and survey its applications in
radiology. We focused on six categories of applications in radiology: medical image …

[BOG][B] Data clustering: theory, algorithms, and applications

G Gan, C Ma, J Wu - 2020 - SIAM
The monograph Data Clustering: Theory, Algorithms, and Applications was published in
2007. Starting with the common ground and knowledge for data clustering, the monograph …

kml and kml3d: R packages to cluster longitudinal data

C Genolini, X Alacoque, M Sentenac… - Journal of statistical …, 2015 - jstatsoft.org
Longitudinal studies are essential tools in medical research. In these studies, variables are
not restricted to single measurements but can be seen as variable-trajectories, either single …