A brief introduction to chemical reaction optimization

CJ Taylor, A Pomberger, KC Felton, R Grainger… - Chemical …, 2023 - ACS Publications
From the start of a synthetic chemist's training, experiments are conducted based on recipes
from textbooks and manuscripts that achieve clean reaction outcomes, allowing the scientist …

A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Geometric deep learning on molecular representations

K Atz, F Grisoni, G Schneider - Nature Machine Intelligence, 2021 - nature.com
Geometric deep learning (GDL) is based on neural network architectures that incorporate
and process symmetry information. GDL bears promise for molecular modelling applications …

Graph transformer networks

S Yun, M Jeong, R Kim, J Kang… - Advances in neural …, 2019 - proceedings.neurips.cc
Graph neural networks (GNNs) have been widely used in representation learning on graphs
and achieved state-of-the-art performance in tasks such as node classification and link …

Analyzing learned molecular representations for property prediction

K Yang, K Swanson, W **, C Coley… - Journal of chemical …, 2019 - ACS Publications
Advancements in neural machinery have led to a wide range of algorithmic solutions for
molecular property prediction. Two classes of models in particular have yielded promising …

Provably powerful graph networks

H Maron, H Ben-Hamu… - Advances in neural …, 2019 - proceedings.neurips.cc
Abstract Recently, the Weisfeiler-Lehman (WL) graph isomorphism test was used to
measure the expressive power of graph neural networks (GNN). It was shown that the …

How powerful are graph neural networks?

K Xu, W Hu, J Leskovec, S Jegelka - arxiv preprint arxiv:1810.00826, 2018 - arxiv.org
Graph Neural Networks (GNNs) are an effective framework for representation learning of
graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector …

Weisfeiler and leman go neural: Higher-order graph neural networks

C Morris, M Ritzert, M Fey, WL Hamilton… - Proceedings of the …, 2019 - ojs.aaai.org
In recent years, graph neural networks (GNNs) have emerged as a powerful neural
architecture to learn vector representations of nodes and graphs in a supervised, end-to-end …

Hierarchical graph representation learning with differentiable pooling

Z Ying, J You, C Morris, X Ren… - Advances in neural …, 2018 - proceedings.neurips.cc
Recently, graph neural networks (GNNs) have revolutionized the field of graph
representation learning through effectively learned node embeddings, and achieved state-of …