Maximum likelihood estimation of regularization parameters in high-dimensional inverse problems: An empirical bayesian approach part i: Methodology and …

AF Vidal, V De Bortoli, M Pereyra, A Durmus - SIAM Journal on Imaging …, 2020 - SIAM
Many imaging problems require solving an inverse problem that is ill-conditioned or ill-
posed. Imaging methods typically address this difficulty by regularizing the estimation …

Bayesian inference and uncertainty quantification for medical image reconstruction with Poisson data

Q Zhou, T Yu, X Zhang, J Li - SIAM Journal on Imaging Sciences, 2020 - SIAM
We provide a complete framework for performing infinite dimensional Bayesian inference
and uncertainty quantification for image reconstruction with Poisson data. In particular, we …

Cooperative localisation for multi-RSU vehicular networks based on predictive beamforming

C Yu, Z Ye, Y He, M Gao, H Luo, G Yu - Annals of Telecommunications, 2024 - Springer
The integration of sensing and communication has become essential to next-generation
vehicular networks. In this paper, we investigate a vehicle-to-infrastructure (V2I) network with …

Maximum likelihood estimation of regularisation parameters

AF Vidal, M Pereyra - 2018 25th IEEE International Conference …, 2018 - ieeexplore.ieee.org
This paper presents an empirical Bayesian method to estimate regularisation parameters in
imaging inverse problems. The method calibrates regularisation parameters directly from the …

Voronoi tessellation‐based regionalised segmentation for colour texture image

Q Zhao, Y Wang, Y Li - IET Computer Vision, 2016 - Wiley Online Library
This study presents a region‐based algorithm for segmenting colour texture image, which
uses Voronoi tessellation for partitioning the domain of the image and Markov random field …

Local autoencoding for parameter estimation in a hidden Potts-Markov random field

S Song, B Si, JM Herrmann… - IEEE Transactions on …, 2016 - ieeexplore.ieee.org
A local-autoencoding (LAE) method is proposed for the parameter estimation in a Hidden
Potts-Markov random field model. Due to sampling cost, Markov chain Monte Carlo methods …

Fast Bayesian model selection in imaging inverse problems using residuals

AF Vidal, M Pereyra, A Durmus… - 2021 IEEE Statistical …, 2021 - ieeexplore.ieee.org
This paper presents a fast heuristic for comparing Bayesian models to solve inverse
problems related to signal processing. We focus on problems that are convex wrt the …

Méthodes statistiques fondées sur les groupes de Lie pour le suivi d'un amas de débris spatiaux.

S Labsir - 2020 - theses.hal.science
Dans le contexte de la surveillance spatiale, nous nous intéressons à un amas de débris
évoluant en orbite autour de la Terre et observé par un capteur radar. Il est alors constaté …

Modeling spatial and temporal variabilities in hyperspectral image unmixing

PA Thouvenin - 2017 - theses.hal.science
Acquired in hundreds of contiguous spectral bands, hyperspectral (HS) images have
received an increasing interest due to the significant spectral information they convey about …

[PDF][PDF] Bayesian computation in imaging inverse problems with partially unknown models

AF Vidal - 2021 - core.ac.uk
Many imaging problems require solving a high-dimensional inverse problem that is ill-
conditioned or ill-posed. Imaging methods typically address this difficulty by regularising the …