A review of degradation mechanisms and recent achievements for Ni‐rich cathode‐based Li‐ion batteries

M Jiang, DL Danilov, RA Eichel… - Advanced Energy …, 2021 - Wiley Online Library
The growing demand for sustainable energy storage devices requires rechargeable lithium‐
ion batteries (LIBs) with higher specific capacity and stricter safety standards. Ni‐rich layered …

Challenges and strategies towards single‐crystalline Ni‐rich layered cathodes

L Ni, S Zhang, A Di, W Deng, G Zou… - Advanced energy …, 2022 - Wiley Online Library
The ever‐increasing energy density requirements in electric vehicles (EVs) have boosted
the development of Ni‐rich layered oxide cathodes for state‐of‐the‐art lithium‐ion batteries …

Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-do** strategy

X Ou, T Liu, W Zhong, X Fan, X Guo, X Huang… - Nature …, 2022 - nature.com
High-capacity Ni-rich layered oxides are promising cathode materials for secondary lithium-
based battery systems. However, their structural instability detrimentally affects the battery …

In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes

X Fan, X Ou, W Zhao, Y Liu, B Zhang, J Zhang… - Nature …, 2021 - nature.com
High nickel content in LiNixCoyMnzO2 (NCM, x≥ 0.8, x+ y+ z= 1) layered cathode material
allows high specific energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM …

Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries

S Yin, W Deng, J Chen, X Gao, G Zou, H Hou, X Ji - Nano Energy, 2021 - Elsevier
Ni-rich layered transition metal oxide is one of the most promising cathode materials for the
next generation lithium-based automotive batteries due to its excellent electrochemical …

Chemomechanics of rechargeable batteries: status, theories, and perspectives

LS de Vasconcelos, R Xu, Z Xu, J Zhang… - Chemical …, 2022 - ACS Publications
Chemomechanics is an old subject, yet its importance has been revived in rechargeable
batteries where the mechanical energy and damage associated with redox reactions can …

Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge

UH Kim, GT Park, BK Son, GW Nam, J Liu, LY Kuo… - Nature Energy, 2020 - nature.com
The demand for energy sources with high energy densities continues to push the limits of Ni-
rich layered oxides, which are currently the most promising cathode materials in automobile …

Surface enrichment and diffusion enabling gradient-do** and coating of Ni-rich cathode toward Li-ion batteries

H Yu, Y Cao, L Chen, Y Hu, X Duan, S Dai, C Li… - Nature …, 2021 - nature.com
Critical barriers to layered Ni-rich cathode commercialisation include their rapid capacity
fading and thermal runaway from crystal disintegration and their interfacial instability …

Challenges and opportunities to mitigate the catastrophic thermal runaway of high‐energy batteries

Y Wang, X Feng, W Huang, X He… - Advanced Energy …, 2023 - Wiley Online Library
Li‐ion batteries (LIBs) that promise both safety and high energy density are critical for a new‐
energy future. However, recent studies on battery thermal runaway (TR) suggest that the …

Recent progress and perspective of advanced high‐energy Co‐less Ni‐rich cathodes for Li‐ion batteries: yesterday, today, and tomorrow

JU Choi, N Voronina, YK Sun… - Advanced Energy …, 2020 - Wiley Online Library
With the ever‐increasing requirement for high‐energy density lithium‐ion batteries (LIBs) to
drive pure/hybrid electric vehicles (EVs), considerable attention has been paid to the …