Explainable AI (XAI): Core ideas, techniques, and solutions

R Dwivedi, D Dave, H Naik, S Singhal, R Omer… - ACM Computing …, 2023 - dl.acm.org
As our dependence on intelligent machines continues to grow, so does the demand for more
transparent and interpretable models. In addition, the ability to explain the model generally …

Adversarial machine learning for network intrusion detection systems: A comprehensive survey

K He, DD Kim, MR Asghar - IEEE Communications Surveys & …, 2023 - ieeexplore.ieee.org
Network-based Intrusion Detection System (NIDS) forms the frontline defence against
network attacks that compromise the security of the data, systems, and networks. In recent …

Cross-entropy loss functions: Theoretical analysis and applications

A Mao, M Mohri, Y Zhong - International conference on …, 2023 - proceedings.mlr.press
Cross-entropy is a widely used loss function in applications. It coincides with the logistic loss
applied to the outputs of a neural network, when the softmax is used. But, what guarantees …

Understanding the robustness in vision transformers

D Zhou, Z Yu, E **e, C **ao… - International …, 2022 - proceedings.mlr.press
Recent studies show that Vision Transformers (ViTs) exhibit strong robustness against
various corruptions. Although this property is partly attributed to the self-attention …

Industry 4.0 vs. Industry 5.0: Co-existence, transition, or a hybrid

M Golovianko, V Terziyan, V Branytskyi… - Procedia Computer …, 2023 - Elsevier
Smart manufacturing is being shaped nowadays by two different paradigms: Industry 4.0
proclaims transition to digitalization and automation of processes while emerging Industry …

Self-supervised learning of adversarial example: Towards good generalizations for deepfake detection

L Chen, Y Zhang, Y Song, L Liu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Recent studies in deepfake detection have yielded promising results when the training and
testing face forgeries are from the same dataset. However, the problem remains challenging …

Membership inference attacks on machine learning: A survey

H Hu, Z Salcic, L Sun, G Dobbie, PS Yu… - ACM Computing Surveys …, 2022 - dl.acm.org
Machine learning (ML) models have been widely applied to various applications, including
image classification, text generation, audio recognition, and graph data analysis. However …

Enhancing the transferability of adversarial attacks through variance tuning

X Wang, K He - Proceedings of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Deep neural networks are vulnerable to adversarial examples that mislead the models with
imperceptible perturbations. Though adversarial attacks have achieved incredible success …

When machine learning meets privacy: A survey and outlook

B Liu, M Ding, S Shaham, W Rahayu… - ACM Computing …, 2021 - dl.acm.org
The newly emerged machine learning (eg, deep learning) methods have become a strong
driving force to revolutionize a wide range of industries, such as smart healthcare, financial …

Recent advances in adversarial training for adversarial robustness

T Bai, J Luo, J Zhao, B Wen, Q Wang - arxiv preprint arxiv:2102.01356, 2021 - arxiv.org
Adversarial training is one of the most effective approaches defending against adversarial
examples for deep learning models. Unlike other defense strategies, adversarial training …