Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment
Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict
patient outcomes, and inform treatment planning. Here, we review recent applications of ML …
patient outcomes, and inform treatment planning. Here, we review recent applications of ML …
Artificial intelligence for digital and computational pathology
Advances in digitizing tissue slides and the fast-paced progress in artificial intelligence,
including deep learning, have boosted the field of computational pathology. This field holds …
including deep learning, have boosted the field of computational pathology. This field holds …
A visual-language foundation model for computational pathology
The accelerated adoption of digital pathology and advances in deep learning have enabled
the development of robust models for various pathology tasks across a diverse array of …
the development of robust models for various pathology tasks across a diverse array of …
A whole-slide foundation model for digital pathology from real-world data
Digital pathology poses unique computational challenges, as a standard gigapixel slide may
comprise tens of thousands of image tiles,–. Prior models have often resorted to …
comprise tens of thousands of image tiles,–. Prior models have often resorted to …
Artificial intelligence in histopathology: enhancing cancer research and clinical oncology
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …
information from digital histopathology images. AI is expected to reduce workload for human …
A pathology foundation model for cancer diagnosis and prognosis prediction
Histopathology image evaluation is indispensable for cancer diagnoses and subtype
classification. Standard artificial intelligence methods for histopathology image analyses …
classification. Standard artificial intelligence methods for histopathology image analyses …
Scaling vision transformers to gigapixel images via hierarchical self-supervised learning
Abstract Vision Transformers (ViTs) and their multi-scale and hierarchical variations have
been successful at capturing image representations but their use has been generally …
been successful at capturing image representations but their use has been generally …
Artificial intelligence-based multi-omics analysis fuels cancer precision medicine
With biotechnological advancements, innovative omics technologies are constantly
emerging that have enabled researchers to access multi-layer information from the genome …
emerging that have enabled researchers to access multi-layer information from the genome …
Demographic bias in misdiagnosis by computational pathology models
Despite increasing numbers of regulatory approvals, deep learning-based computational
pathology systems often overlook the impact of demographic factors on performance …
pathology systems often overlook the impact of demographic factors on performance …
AI in health and medicine
Artificial intelligence (AI) is poised to broadly reshape medicine, potentially improving the
experiences of both clinicians and patients. We discuss key findings from a 2-year weekly …
experiences of both clinicians and patients. We discuss key findings from a 2-year weekly …