From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment

K Swanson, E Wu, A Zhang, AA Alizadeh, J Zou - Cell, 2023 - cell.com
Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict
patient outcomes, and inform treatment planning. Here, we review recent applications of ML …

Artificial intelligence for digital and computational pathology

AH Song, G Jaume, DFK Williamson, MY Lu… - Nature Reviews …, 2023 - nature.com
Advances in digitizing tissue slides and the fast-paced progress in artificial intelligence,
including deep learning, have boosted the field of computational pathology. This field holds …

A visual-language foundation model for computational pathology

MY Lu, B Chen, DFK Williamson, RJ Chen, I Liang… - Nature Medicine, 2024 - nature.com
The accelerated adoption of digital pathology and advances in deep learning have enabled
the development of robust models for various pathology tasks across a diverse array of …

A whole-slide foundation model for digital pathology from real-world data

H Xu, N Usuyama, J Bagga, S Zhang, R Rao… - Nature, 2024 - nature.com
Digital pathology poses unique computational challenges, as a standard gigapixel slide may
comprise tens of thousands of image tiles,–. Prior models have often resorted to …

Artificial intelligence in histopathology: enhancing cancer research and clinical oncology

A Shmatko, N Ghaffari Laleh, M Gerstung, JN Kather - Nature cancer, 2022 - nature.com
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …

A pathology foundation model for cancer diagnosis and prognosis prediction

X Wang, J Zhao, E Marostica, W Yuan, J **, J Zhang… - Nature, 2024 - nature.com
Histopathology image evaluation is indispensable for cancer diagnoses and subtype
classification. Standard artificial intelligence methods for histopathology image analyses …

Scaling vision transformers to gigapixel images via hierarchical self-supervised learning

RJ Chen, C Chen, Y Li, TY Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Vision Transformers (ViTs) and their multi-scale and hierarchical variations have
been successful at capturing image representations but their use has been generally …

Artificial intelligence-based multi-omics analysis fuels cancer precision medicine

X He, X Liu, F Zuo, H Shi, J **g - Seminars in Cancer Biology, 2023 - Elsevier
With biotechnological advancements, innovative omics technologies are constantly
emerging that have enabled researchers to access multi-layer information from the genome …

Demographic bias in misdiagnosis by computational pathology models

A Vaidya, RJ Chen, DFK Williamson, AH Song… - Nature Medicine, 2024 - nature.com
Despite increasing numbers of regulatory approvals, deep learning-based computational
pathology systems often overlook the impact of demographic factors on performance …

AI in health and medicine

P Rajpurkar, E Chen, O Banerjee, EJ Topol - Nature medicine, 2022 - nature.com
Artificial intelligence (AI) is poised to broadly reshape medicine, potentially improving the
experiences of both clinicians and patients. We discuss key findings from a 2-year weekly …