Wild patterns reloaded: A survey of machine learning security against training data poisoning

AE Cinà, K Grosse, A Demontis, S Vascon… - ACM Computing …, 2023 - dl.acm.org
The success of machine learning is fueled by the increasing availability of computing power
and large training datasets. The training data is used to learn new models or update existing …

Backdoor learning: A survey

Y Li, Y Jiang, Z Li, ST **a - IEEE Transactions on Neural …, 2022 - ieeexplore.ieee.org
Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so
that the attacked models perform well on benign samples, whereas their predictions will be …

Anti-backdoor learning: Training clean models on poisoned data

Y Li, X Lyu, N Koren, L Lyu, B Li… - Advances in Neural …, 2021 - proceedings.neurips.cc
Backdoor attack has emerged as a major security threat to deep neural networks (DNNs).
While existing defense methods have demonstrated promising results on detecting or …

An overview of backdoor attacks against deep neural networks and possible defences

W Guo, B Tondi, M Barni - IEEE Open Journal of Signal …, 2022 - ieeexplore.ieee.org
Together with impressive advances touching every aspect of our society, AI technology
based on Deep Neural Networks (DNN) is bringing increasing security concerns. While …

Bppattack: Stealthy and efficient trojan attacks against deep neural networks via image quantization and contrastive adversarial learning

Z Wang, J Zhai, S Ma - … of the IEEE/CVF Conference on …, 2022 - openaccess.thecvf.com
Deep neural networks are vulnerable to Trojan attacks. Existing attacks use visible patterns
(eg, a patch or image transformations) as triggers, which are vulnerable to human …

Revisiting the assumption of latent separability for backdoor defenses

X Qi, T **e, Y Li, S Mahloujifar… - The eleventh international …, 2023 - openreview.net
Recent studies revealed that deep learning is susceptible to backdoor poisoning attacks. An
adversary can embed a hidden backdoor into a model to manipulate its predictions by only …

Color backdoor: A robust poisoning attack in color space

W Jiang, H Li, G Xu, T Zhang - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
Backdoor attacks against neural networks have been intensively investigated, where the
adversary compromises the integrity of the victim model, causing it to make wrong …

Defeat: Deep hidden feature backdoor attacks by imperceptible perturbation and latent representation constraints

Z Zhao, X Chen, Y Xuan, Y Dong… - Proceedings of the …, 2022 - openaccess.thecvf.com
Backdoor attack is a type of serious security threat to deep learning models. An adversary
can provide users with a model trained on poisoned data to manipulate prediction behavior …

Detecting backdoors in pre-trained encoders

S Feng, G Tao, S Cheng, G Shen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Self-supervised learning in computer vision trains on unlabeled data, such as images or
(image, text) pairs, to obtain an image encoder that learns high-quality embeddings for input …

Hidden backdoors in human-centric language models

S Li, H Liu, T Dong, BZH Zhao, M Xue, H Zhu… - Proceedings of the 2021 …, 2021 - dl.acm.org
Natural language processing (NLP) systems have been proven to be vulnerable to backdoor
attacks, whereby hidden features (backdoors) are trained into a language model and may …