Machine learning for microcontroller-class hardware: A review
The advancements in machine learning (ML) opened a new opportunity to bring intelligence
to the low-end Internet-of-Things (IoT) nodes, such as microcontrollers. Conventional ML …
to the low-end Internet-of-Things (IoT) nodes, such as microcontrollers. Conventional ML …
A survey of privacy attacks in machine learning
As machine learning becomes more widely used, the need to study its implications in
security and privacy becomes more urgent. Although the body of work in privacy has been …
security and privacy becomes more urgent. Although the body of work in privacy has been …
Trustworthy LLMs: A survey and guideline for evaluating large language models' alignment
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …
Reconstructing training data from trained neural networks
Understanding to what extent neural networks memorize training data is an intriguing
question with practical and theoretical implications. In this paper we show that in some …
question with practical and theoretical implications. In this paper we show that in some …
Computationally budgeted continual learning: What does matter?
Continual Learning (CL) aims to sequentially train models on streams of incoming data that
vary in distribution by preserving previous knowledge while adapting to new data. Current …
vary in distribution by preserving previous knowledge while adapting to new data. Current …
Stealing part of a production language model
We introduce the first model-stealing attack that extracts precise, nontrivial information from
black-box production language models like OpenAI's ChatGPT or Google's PaLM-2 …
black-box production language models like OpenAI's ChatGPT or Google's PaLM-2 …
Data-free model extraction
Current model extraction attacks assume that the adversary has access to a surrogate
dataset with characteristics similar to the proprietary data used to train the victim model. This …
dataset with characteristics similar to the proprietary data used to train the victim model. This …
Towards data-free model stealing in a hard label setting
Abstract Machine learning models deployed as a service (MLaaS) are susceptible to model
stealing attacks, where an adversary attempts to steal the model within a restricted access …
stealing attacks, where an adversary attempts to steal the model within a restricted access …
I know what you trained last summer: A survey on stealing machine learning models and defences
Machine-Learning-as-a-Service (MLaaS) has become a widespread paradigm, making
even the most complex Machine Learning models available for clients via, eg, a pay-per …
even the most complex Machine Learning models available for clients via, eg, a pay-per …
Backdoor attacks and countermeasures on deep learning: A comprehensive review
This work provides the community with a timely comprehensive review of backdoor attacks
and countermeasures on deep learning. According to the attacker's capability and affected …
and countermeasures on deep learning. According to the attacker's capability and affected …