Data-centric ai: Perspectives and challenges

D Zha, ZP Bhat, KH Lai, F Yang, X Hu - Proceedings of the 2023 SIAM …, 2023 - SIAM
The role of data in building AI systems has recently been significantly magnified by the
emerging concept of data-centric AI (DCAI), which advocates a fundamental shift from model …

Large sequence models for sequential decision-making: a survey

M Wen, R Lin, H Wang, Y Yang, Y Wen, L Mai… - Frontiers of Computer …, 2023 - Springer
Transformer architectures have facilitated the development of large-scale and general-
purpose sequence models for prediction tasks in natural language processing and computer …

Is conditional generative modeling all you need for decision-making?

A Ajay, Y Du, A Gupta, J Tenenbaum… - arxiv preprint arxiv …, 2022 - arxiv.org
Recent improvements in conditional generative modeling have made it possible to generate
high-quality images from language descriptions alone. We investigate whether these …

Q-transformer: Scalable offline reinforcement learning via autoregressive q-functions

Y Chebotar, Q Vuong, K Hausman… - … on Robot Learning, 2023 - proceedings.mlr.press
In this work, we present a scalable reinforcement learning method for training multi-task
policies from large offline datasets that can leverage both human demonstrations and …

Multi-game decision transformers

KH Lee, O Nachum, MS Yang, L Lee… - Advances in …, 2022 - proceedings.neurips.cc
A longstanding goal of the field of AI is a method for learning a highly capable, generalist
agent from diverse experience. In the subfields of vision and language, this was largely …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arxiv preprint arxiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Decision transformer: Reinforcement learning via sequence modeling

L Chen, K Lu, A Rajeswaran, K Lee… - Advances in neural …, 2021 - proceedings.neurips.cc
We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence
modeling problem. This allows us to draw upon the simplicity and scalability of the …

Offline reinforcement learning as one big sequence modeling problem

M Janner, Q Li, S Levine - Advances in neural information …, 2021 - proceedings.neurips.cc
Reinforcement learning (RL) is typically viewed as the problem of estimating single-step
policies (for model-free RL) or single-step models (for model-based RL), leveraging the …

Contrastive learning as goal-conditioned reinforcement learning

B Eysenbach, T Zhang, S Levine… - Advances in Neural …, 2022 - proceedings.neurips.cc
In reinforcement learning (RL), it is easier to solve a task if given a good representation.
While deep RL should automatically acquire such good representations, prior work often …

In-context reinforcement learning with algorithm distillation

M Laskin, L Wang, J Oh, E Parisotto, S Spencer… - arxiv preprint arxiv …, 2022 - arxiv.org
We propose Algorithm Distillation (AD), a method for distilling reinforcement learning (RL)
algorithms into neural networks by modeling their training histories with a causal sequence …