Gaussian process regression for materials and molecules
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …
methods in computational materials science and chemistry. The focus of the present review …
Machine learning force fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …
numerous advances previously out of reach due to the computational complexity of …
E (n) equivariant graph neural networks
This paper introduces a new model to learn graph neural networks equivariant to rotations,
translations, reflections and permutations called E (n)-Equivariant Graph Neural Networks …
translations, reflections and permutations called E (n)-Equivariant Graph Neural Networks …
Machine learning and the physical sciences
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …
for a vast array of data processing tasks, which has entered most scientific disciplines in …
Four generations of high-dimensional neural network potentials
J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Message passing neural networks have become a method of choice for learning on graphs,
in particular the prediction of chemical properties and the acceleration of molecular …
in particular the prediction of chemical properties and the acceleration of molecular …
Schnet–a deep learning architecture for molecules and materials
Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and
image search, speech recognition, as well as bioinformatics, with growing impact in …
image search, speech recognition, as well as bioinformatics, with growing impact in …
Physics-inspired structural representations for molecules and materials
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …
predict or elucidate the relationship between the atomic-scale structure of matter and its …
Machine-learned potentials for next-generation matter simulations
The choice of simulation methods in computational materials science is driven by a
fundamental trade-off: bridging large time-and length-scales with highly accurate …
fundamental trade-off: bridging large time-and length-scales with highly accurate …
Machine learning for molecular simulation
Machine learning (ML) is transforming all areas of science. The complex and time-
consuming calculations in molecular simulations are particularly suitable for an ML …
consuming calculations in molecular simulations are particularly suitable for an ML …