Divergence measures for statistical data processing—An annotated bibliography

M Basseville - Signal Processing, 2013 - Elsevier
Divergence measures for statistical data processing—An annotated bibliography -
ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books Search …

A review of blind source separation methods: two converging routes to ILRMA originating from ICA and NMF

H Sawada, N Ono, H Kameoka, D Kitamura… - … Transactions on Signal …, 2019 - cambridge.org
This paper describes several important methods for the blind source separation of audio
signals in an integrated manner. Two historically developed routes are featured. One started …

BERTopic: Neural topic modeling with a class-based TF-IDF procedure

M Grootendorst - arxiv preprint arxiv:2203.05794, 2022 - arxiv.org
Topic models can be useful tools to discover latent topics in collections of documents.
Recent studies have shown the feasibility of approach topic modeling as a clustering task …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Craft: Concept recursive activation factorization for explainability

T Fel, A Picard, L Bethune, T Boissin… - Proceedings of the …, 2023 - openaccess.thecvf.com
Attribution methods are a popular class of explainability methods that use heatmaps to
depict the most important areas of an image that drive a model decision. Nevertheless …

Majorization-minimization algorithms in signal processing, communications, and machine learning

Y Sun, P Babu, DP Palomar - IEEE Transactions on Signal …, 2016 - ieeexplore.ieee.org
This paper gives an overview of the majorization-minimization (MM) algorithmic framework,
which can provide guidance in deriving problem-driven algorithms with low computational …

MOLI: multi-omics late integration with deep neural networks for drug response prediction

H Sharifi-Noghabi, O Zolotareva, CC Collins… - …, 2019 - academic.oup.com
Motivation Historically, gene expression has been shown to be the most informative data for
drug response prediction. Recent evidence suggests that integrating additional omics can …

Learning to separate object sounds by watching unlabeled video

R Gao, R Feris, K Grauman - Proceedings of the European …, 2018 - openaccess.thecvf.com
Perceiving a scene most fully requires all the senses. Yet modeling how objects look and
sound is challenging: most natural scenes and events contain multiple objects, and the …

A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing

M Hong, M Razaviyayn, ZQ Luo… - IEEE Signal Processing …, 2015 - ieeexplore.ieee.org
This article presents a powerful algorithmic framework for big data optimization, called the
block successive upper-bound minimization (BSUM). The BSUM includes as special cases …

Robust deep k-means: An effective and simple method for data clustering

S Huang, Z Kang, Z Xu, Q Liu - Pattern Recognition, 2021 - Elsevier
Clustering aims to partition an input dataset into distinct groups according to some distance
or similarity measurements. One of the most widely used clustering method nowadays is the …