A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations

H Cheng, M Zhang, JQ Shi - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Modern deep neural networks, particularly recent large language models, come with
massive model sizes that require significant computational and storage resources. To …

A survey of techniques for optimizing transformer inference

KT Chitty-Venkata, S Mittal, M Emani… - Journal of Systems …, 2023 - Elsevier
Recent years have seen a phenomenal rise in the performance and applications of
transformer neural networks. The family of transformer networks, including Bidirectional …

Llm-pruner: On the structural pruning of large language models

X Ma, G Fang, X Wang - Advances in neural information …, 2023 - proceedings.neurips.cc
Large language models (LLMs) have shown remarkable capabilities in language
understanding and generation. However, such impressive capability typically comes with a …

Sparsegpt: Massive language models can be accurately pruned in one-shot

E Frantar, D Alistarh - International Conference on Machine …, 2023 - proceedings.mlr.press
We show for the first time that large-scale generative pretrained transformer (GPT) family
models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal …

A simple and effective pruning approach for large language models

M Sun, Z Liu, A Bair, JZ Kolter - arxiv preprint arxiv:2306.11695, 2023 - arxiv.org
As their size increases, Large Languages Models (LLMs) are natural candidates for network
pruning methods: approaches that drop a subset of network weights while striving to …

{InfiniGen}: Efficient generative inference of large language models with dynamic {KV} cache management

W Lee, J Lee, J Seo, J Sim - 18th USENIX Symposium on Operating …, 2024 - usenix.org
Transformer-based large language models (LLMs) demonstrate impressive performance
across various natural language processing tasks. Serving LLM inference for generating …

Squeezellm: Dense-and-sparse quantization

S Kim, C Hooper, A Gholami, Z Dong, X Li… - arxiv preprint arxiv …, 2023 - arxiv.org
Generative Large Language Models (LLMs) have demonstrated remarkable results for a
wide range of tasks. However, deploying these models for inference has been a significant …

Speculative decoding with big little decoder

S Kim, K Mangalam, S Moon, J Malik… - Advances in …, 2024 - proceedings.neurips.cc
The recent emergence of Large Language Models based on the Transformer architecture
has enabled dramatic advancements in the field of Natural Language Processing. However …

Full stack optimization of transformer inference: a survey

S Kim, C Hooper, T Wattanawong, M Kang… - arxiv preprint arxiv …, 2023 - arxiv.org
Recent advances in state-of-the-art DNN architecture design have been moving toward
Transformer models. These models achieve superior accuracy across a wide range of …

Shortened llama: A simple depth pruning for large language models

BK Kim, G Kim, TH Kim, T Castells, S Choi… - arxiv preprint arxiv …, 2024 - openreview.net
Structured pruning of modern large language models (LLMs) has emerged as a way of
decreasing their high computational needs. Width pruning reduces the size of projection …