Learning correlation information for multi-label feature selection

Y Fan, J Liu, J Tang, P Liu, Y Lin, Y Du - Pattern Recognition, 2024 - Elsevier
In many real-world multi-label applications, the content of multi-label data is usually
characterized by high dimensional features, which contains complex correlation information …

MFSJMI: Multi-label feature selection considering join mutual information and interaction weight

P Zhang, G Liu, J Song - Pattern Recognition, 2023 - Elsevier
Multi-label feature selection captures a reliable and informative feature subset from high-
dimensional multi-label data, which plays an important role in pattern recognition. In …

Feature-specific mutual information variation for multi-label feature selection

L Hu, L Gao, Y Li, P Zhang, W Gao - Information Sciences, 2022 - Elsevier
Recent years has witnessed urgent needs for addressing the curse of dimensionality
regarding multi-label data, which attracts wide attention for feature selection. Feature …

Multi-label feature selection based on label correlations and feature redundancy

Y Fan, B Chen, W Huang, J Liu, W Weng… - Knowledge-Based …, 2022 - Elsevier
The task of multi-label feature selection (MLFS) is to reduce redundant information and
generate the optimal feature subset from the original multi-label data. A variety of MLFS …

Multi-objective PSO based online feature selection for multi-label classification

D Paul, A Jain, S Saha, J Mathew - Knowledge-Based Systems, 2021 - Elsevier
Feature selection approaches aim to select a set of prominent features that best describe the
data to improve the efficiency without degrading the performance of the model. In many real …

Multi-label feature selection by strongly relevant label gain and label mutual aid

J Dai, W Huang, C Zhang, J Liu - Pattern Recognition, 2024 - Elsevier
Multi-label feature selection, which addresses the challenge of high dimensionality in multi-
label learning, has wide applicability in pattern recognition, machine learning, and related …

A unified low-order information-theoretic feature selection framework for multi-label learning

W Gao, P Hao, Y Wu, P Zhang - Pattern Recognition, 2023 - Elsevier
The approximation of low-order information-theoretic terms for feature selection approaches
has achieved success in addressing high-dimensional multi-label data. However, three …

Fast multilabel feature selection via global relevance and redundancy optimization

J Zhang, Y Lin, M Jiang, S Li, Y Tang… - … on Neural Networks …, 2022 - ieeexplore.ieee.org
Information theoretical-based methods have attracted a great attention in recent years and
gained promising results for multilabel feature selection (MLFS). Nevertheless, most of the …

Online multi-label streaming feature selection based on neighborhood rough set

J Liu, Y Lin, Y Li, W Weng, S Wu - Pattern Recognition, 2018 - Elsevier
Multi-label feature selection has grabbed intensive attention in many big data applications.
However, traditional multi-label feature selection methods generally ignore a real-world …

Multilabel feature selection with constrained latent structure shared term

W Gao, Y Li, L Hu - IEEE Transactions on Neural Networks and …, 2021 - ieeexplore.ieee.org
High-dimensional multilabel data have increasingly emerged in many application areas,
suffering from two noteworthy issues: instances with high-dimensional features and large …