Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU
Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and
artificial intelligence (AI), outperforming traditional ML methods, especially in handling …
artificial intelligence (AI), outperforming traditional ML methods, especially in handling …
Auto-encoders in deep learning—a review with new perspectives
S Chen, W Guo - Mathematics, 2023 - mdpi.com
Deep learning, which is a subfield of machine learning, has opened a new era for the
development of neural networks. The auto-encoder is a key component of deep structure …
development of neural networks. The auto-encoder is a key component of deep structure …
A survey on neural network interpretability
Along with the great success of deep neural networks, there is also growing concern about
their black-box nature. The interpretability issue affects people's trust on deep learning …
their black-box nature. The interpretability issue affects people's trust on deep learning …
Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven
Mixed noise pollution in HSI severely disturbs subsequent interpretations and applications.
In this technical review, we first give the noise analysis in different noisy HSIs and conclude …
In this technical review, we first give the noise analysis in different noisy HSIs and conclude …
[HTML][HTML] Relation between prognostics predictor evaluation metrics and local interpretability SHAP values
Maintenance decisions in domains such as aeronautics are becoming increasingly
dependent on being able to predict the failure of components and systems. When data …
dependent on being able to predict the failure of components and systems. When data …
Video summarization using deep neural networks: A survey
Video summarization technologies aim to create a concise and complete synopsis by
selecting the most informative parts of the video content. Several approaches have been …
selecting the most informative parts of the video content. Several approaches have been …
Artificial neural networks for photonic applications—from algorithms to implementation: tutorial
This tutorial–review on applications of artificial neural networks in photonics targets a broad
audience, ranging from optical research and engineering communities to computer science …
audience, ranging from optical research and engineering communities to computer science …
Hyperspectral anomaly detection with guided autoencoder
Recently, autoencoder (AE)-based hyperspectral anomaly detection methods have
demonstrated excellent performance on hyperspectral images (HSIs). The AE can …
demonstrated excellent performance on hyperspectral images (HSIs). The AE can …
Deep neural network concepts for background subtraction: A systematic review and comparative evaluation
Conventional neural networks have been demonstrated to be a powerful framework for
background subtraction in video acquired by static cameras. Indeed, the well-known Self …
background subtraction in video acquired by static cameras. Indeed, the well-known Self …
Autoencoder and its various variants
J Zhai, S Zhang, J Chen, Q He - 2018 IEEE international …, 2018 - ieeexplore.ieee.org
The concept of autoencoder was originally proposed by LeCun in 1987, early works on
autoencoder were used for dimensionality reduction or feature learning. Recently, with the …
autoencoder were used for dimensionality reduction or feature learning. Recently, with the …