Comprehensive review of deep learning-based 3d point cloud completion processing and analysis

B Fei, W Yang, WM Chen, Z Li, Y Li… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
Point cloud completion is a generation and estimation issue derived from the partial point
clouds, which plays a vital role in the applications of 3D computer vision. The progress of …

Recent advances and perspectives in deep learning techniques for 3D point cloud data processing

Z Ding, Y Sun, S Xu, Y Pan, Y Peng, Z Mao - Robotics, 2023 - mdpi.com
In recent years, deep learning techniques for processing 3D point cloud data have seen
significant advancements, given their unique ability to extract relevant features and handle …

Occformer: Dual-path transformer for vision-based 3d semantic occupancy prediction

Y Zhang, Z Zhu, D Du - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
The vision-based perception for autonomous driving has undergone a transformation from
the bird-eye-view (BEV) representations to the 3D semantic occupancy. Compared with the …

Point-bert: Pre-training 3d point cloud transformers with masked point modeling

X Yu, L Tang, Y Rao, T Huang… - Proceedings of the …, 2022 - openaccess.thecvf.com
We present Point-BERT, a novel paradigm for learning Transformers to generalize the
concept of BERT onto 3D point cloud. Following BERT, we devise a Masked Point Modeling …

Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud pre-training

R Zhang, Z Guo, P Gao, R Fang… - Advances in neural …, 2022 - proceedings.neurips.cc
Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for
language and 2D image transformers. However, it still remains an open question on how to …

Regtr: End-to-end point cloud correspondences with transformers

ZJ Yew, GH Lee - Proceedings of the IEEE/CVF conference …, 2022 - openaccess.thecvf.com
Despite recent success in incorporating learning into point cloud registration, many works
focus on learning feature descriptors and continue to rely on nearest-neighbor feature …

Dynamicvit: Efficient vision transformers with dynamic token sparsification

Y Rao, W Zhao, B Liu, J Lu, J Zhou… - Advances in neural …, 2021 - proceedings.neurips.cc
Attention is sparse in vision transformers. We observe the final prediction in vision
transformers is only based on a subset of most informative tokens, which is sufficient for …

Global filter networks for image classification

Y Rao, W Zhao, Z Zhu, J Lu… - Advances in neural …, 2021 - proceedings.neurips.cc
Recent advances in self-attention and pure multi-layer perceptrons (MLP) models for vision
have shown great potential in achieving promising performance with fewer inductive biases …

A survey of visual transformers

Y Liu, Y Zhang, Y Wang, F Hou, J Yuan… - … on Neural Networks …, 2023 - ieeexplore.ieee.org
Transformer, an attention-based encoder–decoder model, has already revolutionized the
field of natural language processing (NLP). Inspired by such significant achievements, some …

Autosdf: Shape priors for 3d completion, reconstruction and generation

P Mittal, YC Cheng, M Singh… - Proceedings of the …, 2022 - openaccess.thecvf.com
Powerful priors allow us to perform inference with insufficient information. In this paper, we
propose an autoregressive prior for 3D shapes to solve multimodal 3D tasks such as shape …