Avoiding overfitting: A survey on regularization methods for convolutional neural networks
CFGD Santos, JP Papa - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
Several image processing tasks, such as image classification and object detection, have
been significantly improved using Convolutional Neural Networks (CNN). Like ResNet and …
been significantly improved using Convolutional Neural Networks (CNN). Like ResNet and …
A survey of deep active learning
Active learning (AL) attempts to maximize a model's performance gain while annotating the
fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount …
fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount …
Detrs beat yolos on real-time object detection
The YOLO series has become the most popular framework for real-time object detection due
to its reasonable trade-off between speed and accuracy. However we observe that the …
to its reasonable trade-off between speed and accuracy. However we observe that the …
Segnext: Rethinking convolutional attention design for semantic segmentation
We present SegNeXt, a simple convolutional network architecture for semantic
segmentation. Recent transformer-based models have dominated the field of se-mantic …
segmentation. Recent transformer-based models have dominated the field of se-mantic …
Vision-language models for vision tasks: A survey
Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks
(DNNs) training, and they usually train a DNN for each single visual recognition task …
(DNNs) training, and they usually train a DNN for each single visual recognition task …
Rtmdet: An empirical study of designing real-time object detectors
In this paper, we aim to design an efficient real-time object detector that exceeds the YOLO
series and is easily extensible for many object recognition tasks such as instance …
series and is easily extensible for many object recognition tasks such as instance …
Adaface: Quality adaptive margin for face recognition
Recognition in low quality face datasets is challenging because facial attributes are
obscured and degraded. Advances in margin-based loss functions have resulted in …
obscured and degraded. Advances in margin-based loss functions have resulted in …
Curricular contrastive regularization for physics-aware single image dehazing
Considering the ill-posed nature, contrastive regularization has been developed for single
image dehazing, introducing the information from negative images as a lower bound …
image dehazing, introducing the information from negative images as a lower bound …
Vim: Out-of-distribution with virtual-logit matching
Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input
source: the feature, the logit, or the softmax probability. However, the immense diversity of …
source: the feature, the logit, or the softmax probability. However, the immense diversity of …
Understanding the robustness in vision transformers
Recent studies show that Vision Transformers (ViTs) exhibit strong robustness against
various corruptions. Although this property is partly attributed to the self-attention …
various corruptions. Although this property is partly attributed to the self-attention …