Deep learning in mobile and wireless networking: A survey

C Zhang, P Patras, H Haddadi - IEEE Communications surveys …, 2019 - ieeexplore.ieee.org
The rapid uptake of mobile devices and the rising popularity of mobile applications and
services pose unprecedented demands on mobile and wireless networking infrastructure …

Supervised speech separation based on deep learning: An overview

DL Wang, J Chen - IEEE/ACM transactions on audio, speech …, 2018 - ieeexplore.ieee.org
Speech separation is the task of separating target speech from background interference.
Traditionally, speech separation is studied as a signal processing problem. A more recent …

Open graph benchmark: Datasets for machine learning on graphs

W Hu, M Fey, M Zitnik, Y Dong, H Ren… - Advances in neural …, 2020 - proceedings.neurips.cc
Abstract We present the Open Graph Benchmark (OGB), a diverse set of challenging and
realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine …

Speech enhancement and dereverberation with diffusion-based generative models

J Richter, S Welker, JM Lemercier… - … on Audio, Speech …, 2023 - ieeexplore.ieee.org
In this work, we build upon our previous publication and use diffusion-based generative
models for speech enhancement. We present a detailed overview of the diffusion process …

Sound event localization and detection of overlap** sources using convolutional recurrent neural networks

S Adavanne, A Politis, J Nikunen… - IEEE Journal of …, 2018 - ieeexplore.ieee.org
In this paper, we propose a convolutional recurrent neural network for joint sound event
localization and detection (SELD) of multiple overlap** sound events in three-dimensional …

Deep spoken keyword spotting: An overview

I López-Espejo, ZH Tan, JHL Hansen, J Jensen - IEEE Access, 2021 - ieeexplore.ieee.org
Spoken keyword spotting (KWS) deals with the identification of keywords in audio streams
and has become a fast-growing technology thanks to the paradigm shift introduced by deep …

Light gated recurrent units for speech recognition

M Ravanelli, P Brakel, M Omologo… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
A field that has directly benefited from the recent advances in deep learning is automatic
speech recognition (ASR). Despite the great achievements of the past decades, however, a …

Deep learning for environmentally robust speech recognition: An overview of recent developments

Z Zhang, J Geiger, J Pohjalainen, AED Mousa… - ACM Transactions on …, 2018 - dl.acm.org
Eliminating the negative effect of non-stationary environmental noise is a long-standing
research topic for automatic speech recognition but still remains an important challenge …

Neural network based spectral mask estimation for acoustic beamforming

J Heymann, L Drude… - 2016 IEEE International …, 2016 - ieeexplore.ieee.org
We present a neural network based approach to acoustic beamforming. The network is used
to estimate spectral masks from which the Cross-Power Spectral Density matrices of speech …

The chime-7 dasr challenge: Distant meeting transcription with multiple devices in diverse scenarios

S Cornell, M Wiesner, S Watanabe, D Raj… - arxiv preprint arxiv …, 2023 - arxiv.org
The CHiME challenges have played a significant role in the development and evaluation of
robust automatic speech recognition (ASR) systems. We introduce the CHiME-7 distant ASR …