Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

Foundations & trends in multimodal machine learning: Principles, challenges, and open questions

PP Liang, A Zadeh, LP Morency - ACM Computing Surveys, 2024 - dl.acm.org
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …

Artificial intelligence applications in supply chain management

M Pournader, H Ghaderi, A Hassanzadegan… - International Journal of …, 2021 - Elsevier
This paper presents a systematic review of studies related to artificial intelligence (AI)
applications in supply chain management (SCM). Our systematic search of the related …

Foundations and trends in multimodal machine learning: Principles, challenges, and open questions

PP Liang, A Zadeh, LP Morency - arxiv preprint arxiv:2209.03430, 2022 - arxiv.org
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …

Deep double incomplete multi-view multi-label learning with incomplete labels and missing views

J Wen, C Liu, S Deng, Y Liu, L Fei… - IEEE transactions on …, 2023 - ieeexplore.ieee.org
View missing and label missing are two challenging problems in the applications of multi-
view multi-label classification scenery. In the past years, many efforts have been made to …

A survey of optimization methods from a machine learning perspective

S Sun, Z Cao, H Zhu, J Zhao - IEEE transactions on cybernetics, 2019 - ieeexplore.ieee.org
Machine learning develops rapidly, which has made many theoretical breakthroughs and is
widely applied in various fields. Optimization, as an important part of machine learning, has …

Multimodal co-learning: Challenges, applications with datasets, recent advances and future directions

A Rahate, R Walambe, S Ramanna, K Kotecha - Information Fusion, 2022 - Elsevier
Multimodal deep learning systems that employ multiple modalities like text, image, audio,
video, etc., are showing better performance than individual modalities (ie, unimodal) …

Label propagation for deep semi-supervised learning

A Iscen, G Tolias, Y Avrithis… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
Semi-supervised learning is becoming increasingly important because it can combine data
carefully labeled by humans with abundant unlabeled data to train deep neural networks …

Machine learning (ML)-centric resource management in cloud computing: A review and future directions

T Khan, W Tian, G Zhou, S Ilager, M Gong… - Journal of Network and …, 2022 - Elsevier
Cloud computing has rapidly emerged as a model for delivering Internet-based utility
computing services. Infrastructure as a Service (IaaS) is one of the most important and …

Dicnet: Deep instance-level contrastive network for double incomplete multi-view multi-label classification

C Liu, J Wen, X Luo, C Huang, Z Wu… - Proceedings of the AAAI …, 2023 - ojs.aaai.org
In recent years, multi-view multi-label learning has aroused extensive research enthusiasm.
However, multi-view multi-label data in the real world is commonly incomplete due to the …