Noisy intermediate-scale quantum algorithms
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …
integer factorization and unstructured database search requires millions of qubits with low …
Random quantum circuits
Quantum circuits—built from local unitary gates and local measurements—are a new
playground for quantum many-body physics and a tractable setting to explore universal …
playground for quantum many-body physics and a tractable setting to explore universal …
Strong quantum computational advantage using a superconducting quantum processor
Y Wu, WS Bao, S Cao, F Chen, MC Chen, X Chen… - Physical review …, 2021 - APS
Scaling up to a large number of qubits with high-precision control is essential in the
demonstrations of quantum computational advantage to exponentially outpace the classical …
demonstrations of quantum computational advantage to exponentially outpace the classical …
Quantum supremacy using a programmable superconducting processor
The promise of quantum computers is that certain computational tasks might be executed
exponentially faster on a quantum processor than on a classical processor 1. A fundamental …
exponentially faster on a quantum processor than on a classical processor 1. A fundamental …
[HTML][HTML] A quantum engineer's guide to superconducting qubits
The aim of this review is to provide quantum engineers with an introductory guide to the
central concepts and challenges in the rapidly accelerating field of superconducting …
central concepts and challenges in the rapidly accelerating field of superconducting …
Superconducting qubits: Current state of play
Superconducting qubits are leading candidates in the race to build a quantum computer
capable of realizing computations beyond the reach of modern supercomputers. The …
capable of realizing computations beyond the reach of modern supercomputers. The …
Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices
The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical
variational algorithm designed to tackle combinatorial optimization problems. Despite its …
variational algorithm designed to tackle combinatorial optimization problems. Despite its …
Characterizing quantum supremacy in near-term devices
A critical question for quantum computing in the near future is whether quantum devices
without error correction can perform a well-defined computational task beyond the …
without error correction can perform a well-defined computational task beyond the …
Quantum computational advantage via 60-qubit 24-cycle random circuit sampling
To ensure a long-term quantum computational advantage, the quantum hardware should be
upgraded to withstand the competition of continuously improved classical algorithms and …
upgraded to withstand the competition of continuously improved classical algorithms and …
Generation of genuine entanglement up to 51 superconducting qubits
Scalable generation of genuine multipartite entanglement with an increasing number of
qubits is important for both fundamental interest and practical use in quantum-information …
qubits is important for both fundamental interest and practical use in quantum-information …