Local differential privacy and its applications: A comprehensive survey

M Yang, T Guo, T Zhu, I Tjuawinata, J Zhao… - Computer Standards & …, 2024 - Elsevier
With the rapid development of low-cost consumer electronics and pervasive adoption of next
generation wireless communication technologies, a tremendous amount of data has been …

A survey of differential privacy-based techniques and their applicability to location-based services

JW Kim, K Edemacu, JS Kim, YD Chung, B Jang - Computers & Security, 2021 - Elsevier
The widespread use of mobile devices such as smartphones, tablets, and smartwatches has
led users to constantly generate various location data during their daily activities …

Federated learning with differential privacy: Algorithms and performance analysis

K Wei, J Li, M Ding, C Ma, HH Yang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Federated learning (FL), as a type of distributed machine learning, is capable of significantly
preserving clients' private data from being exposed to adversaries. Nevertheless, private …

User-level privacy-preserving federated learning: Analysis and performance optimization

K Wei, J Li, M Ding, C Ma, H Su… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Federated learning (FL), as a type of collaborative machine learning framework, is capable
of preserving private data from mobile terminals (MTs) while training the data into useful …

Low-latency federated learning over wireless channels with differential privacy

K Wei, J Li, C Ma, M Ding, C Chen, S **… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
In federated learning (FL), model training is distributed over clients and local models are
aggregated by a central server. The performance of uploaded models in such situations can …

PFLF: Privacy-preserving federated learning framework for edge computing

H Zhou, G Yang, H Dai, G Liu - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Federated learning (FL) can protect clients' privacy from leakage in distributed machine
learning. Applying federated learning to edge computing can protect the privacy of edge …

A comprehensive survey on local differential privacy toward data statistics and analysis

T Wang, X Zhang, J Feng, X Yang - Sensors, 2020 - mdpi.com
Collecting and analyzing massive data generated from smart devices have become
increasingly pervasive in crowdsensing, which are the building blocks for data-driven …

Scenario-based adaptations of differential privacy: A technical survey

Y Zhao, JT Du, J Chen - ACM Computing Surveys, 2024 - dl.acm.org
Differential privacy has been a de facto privacy standard in defining privacy and handling
privacy preservation. It has had great success in scenarios of local data privacy and …

A comprehensive survey on local differential privacy

X **ong, S Liu, D Li, Z Cai, X Niu - Security and Communication …, 2020 - Wiley Online Library
With the advent of the era of big data, privacy issues have been becoming a hot topic in
public. Local differential privacy (LDP) is a state‐of‐the‐art privacy preservation technique …

Privacy-preserving adaptive resilient consensus for multiagent systems under cyberattacks

C Ying, N Zheng, Y Wu, M Xu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
This article investigates the secure and privacy-preserving consensus problem of multiagent
systems (MASs) with directed interaction topologies under multiple cyberattacks, which …