Backpropagation-based learning techniques for deep spiking neural networks: A survey

M Dampfhoffer, T Mesquida… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
With the adoption of smart systems, artificial neural networks (ANNs) have become
ubiquitous. Conventional ANN implementations have high energy consumption, limiting …

Direct learning-based deep spiking neural networks: a review

Y Guo, X Huang, Z Ma - Frontiers in Neuroscience, 2023 - frontiersin.org
The spiking neural network (SNN), as a promising brain-inspired computational model with
binary spike information transmission mechanism, rich spatially-temporal dynamics, and …

Advancing neuromorphic computing with loihi: A survey of results and outlook

M Davies, A Wild, G Orchard… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep artificial neural networks apply principles of the brain's information processing that led
to breakthroughs in machine learning spanning many problem domains. Neuromorphic …

Training high-performance low-latency spiking neural networks by differentiation on spike representation

Q Meng, M **ao, S Yan, Y Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Spiking Neural Network (SNN) is a promising energy-efficient AI model when
implemented on neuromorphic hardware. However, it is a challenge to efficiently train SNNs …

Online training through time for spiking neural networks

M **ao, Q Meng, Z Zhang, D He… - Advances in neural …, 2022 - proceedings.neurips.cc
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale …

Diet-snn: A low-latency spiking neural network with direct input encoding and leakage and threshold optimization

N Rathi, K Roy - IEEE Transactions on Neural Networks and …, 2021 - ieeexplore.ieee.org
Bioinspired spiking neural networks (SNNs), operating with asynchronous binary signals (or
spikes) distributed over time, can potentially lead to greater computational efficiency on …

Reducing ann-snn conversion error through residual membrane potential

Z Hao, T Bu, J Ding, T Huang, Z Yu - … of the AAAI Conference on Artificial …, 2023 - ojs.aaai.org
Abstract Spiking Neural Networks (SNNs) have received extensive academic attention due
to the unique properties of low power consumption and high-speed computing on …

Optimized potential initialization for low-latency spiking neural networks

T Bu, J Ding, Z Yu, T Huang - Proceedings of the AAAI conference on …, 2022 - ojs.aaai.org
Abstract Spiking Neural Networks (SNNs) have been attached great importance due to the
distinctive properties of low power consumption, biological plausibility, and adversarial …

Optimizing deeper spiking neural networks for dynamic vision sensing

Y Kim, P Panda - Neural Networks, 2021 - Elsevier
Abstract Spiking Neural Networks (SNNs) have recently emerged as a new generation of
low-power deep neural networks due to sparse, asynchronous, and binary event-driven …

Rectified linear postsynaptic potential function for backpropagation in deep spiking neural networks

M Zhang, J Wang, J Wu, A Belatreche… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Spiking neural networks (SNNs) use spatiotemporal spike patterns to represent and transmit
information, which are not only biologically realistic but also suitable for ultralow-power …