[PDF][PDF] Open-environment machine learning

ZH Zhou - National Science Review, 2022 - academic.oup.com
Conventional machine learning studies generally assume close-environment scenarios
where important factors of the learning process hold invariant. With the great success of …

A comprehensive survey of forgetting in deep learning beyond continual learning

Z Wang, E Yang, L Shen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Forgetting refers to the loss or deterioration of previously acquired knowledge. While
existing surveys on forgetting have primarily focused on continual learning, forgetting is a …

Three types of incremental learning

GM Van de Ven, T Tuytelaars, AS Tolias - Nature Machine Intelligence, 2022 - nature.com
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …

Dualprompt: Complementary prompting for rehearsal-free continual learning

Z Wang, Z Zhang, S Ebrahimi, R Sun, H Zhang… - … on Computer Vision, 2022 - Springer
Continual learning aims to enable a single model to learn a sequence of tasks without
catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store …

A continual learning survey: Defying forgetting in classification tasks

M De Lange, R Aljundi, M Masana… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Artificial neural networks thrive in solving the classification problem for a particular rigid task,
acquiring knowledge through generalized learning behaviour from a distinct training phase …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arxiv preprint arxiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Foster: Feature boosting and compression for class-incremental learning

FY Wang, DW Zhou, HJ Ye, DC Zhan - European conference on computer …, 2022 - Springer
The ability to learn new concepts continually is necessary in this ever-changing world.
However, deep neural networks suffer from catastrophic forgetting when learning new …

Class-incremental learning: A survey

DW Zhou, QW Wang, ZH Qi, HJ Ye… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - International Journal of …, 2024 - Springer
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Computationally budgeted continual learning: What does matter?

A Prabhu, HA Al Kader Hammoud… - Proceedings of the …, 2023 - openaccess.thecvf.com
Continual Learning (CL) aims to sequentially train models on streams of incoming data that
vary in distribution by preserving previous knowledge while adapting to new data. Current …