A survey of semi-and weakly supervised semantic segmentation of images
M Zhang, Y Zhou, J Zhao, Y Man, B Liu… - Artificial Intelligence …, 2020 - Springer
Image semantic segmentation is one of the most important tasks in the field of computer
vision, and it has made great progress in many applications. Many fully supervised deep …
vision, and it has made great progress in many applications. Many fully supervised deep …
Segnext: Rethinking convolutional attention design for semantic segmentation
We present SegNeXt, a simple convolutional network architecture for semantic
segmentation. Recent transformer-based models have dominated the field of se-mantic …
segmentation. Recent transformer-based models have dominated the field of se-mantic …
Brain-inspired remote sensing interpretation: A comprehensive survey
Brain-inspired algorithms have become a new trend in next-generation artificial intelligence.
Through research on brain science, the intelligence of remote sensing algorithms can be …
Through research on brain science, the intelligence of remote sensing algorithms can be …
RingMo: A remote sensing foundation model with masked image modeling
Deep learning approaches have contributed to the rapid development of remote sensing
(RS) image interpretation. The most widely used training paradigm is to use ImageNet …
(RS) image interpretation. The most widely used training paradigm is to use ImageNet …
An empirical study of remote sensing pretraining
Deep learning has largely reshaped remote sensing (RS) research for aerial image
understanding and made a great success. Nevertheless, most of the existing deep models …
understanding and made a great success. Nevertheless, most of the existing deep models …
RSSFormer: Foreground saliency enhancement for remote sensing land-cover segmentation
High spatial resolution (HSR) remote sensing images contain complex foreground-
background relationships, which makes the remote sensing land cover segmentation a …
background relationships, which makes the remote sensing land cover segmentation a …
LANet: Local attention embedding to improve the semantic segmentation of remote sensing images
The trade-off between feature representation power and spatial localization accuracy is
crucial for the dense classification/semantic segmentation of remote sensing images (RSIs) …
crucial for the dense classification/semantic segmentation of remote sensing images (RSIs) …
STransFuse: Fusing swin transformer and convolutional neural network for remote sensing image semantic segmentation
L Gao, H Liu, M Yang, L Chen, Y Wan… - IEEE journal of …, 2021 - ieeexplore.ieee.org
The applied research in remote sensing images has been pushed by convolutional neural
network (CNN). Because of the fixed size of the perceptual field, CNN is unable to model …
network (CNN). Because of the fixed size of the perceptual field, CNN is unable to model …
Avoiding negative transfer for semantic segmentation of remote sensing images
Reducing the feature distribution shift caused by the factor of visual-environment changes,
named visual-environment changes (VE-changes), is a hot issue in domain adaptation …
named visual-environment changes (VE-changes), is a hot issue in domain adaptation …