Speech recognition using deep neural networks: A systematic review

AB Nassif, I Shahin, I Attili, M Azzeh, K Shaalan - IEEE access, 2019 - ieeexplore.ieee.org
Over the past decades, a tremendous amount of research has been done on the use of
machine learning for speech processing applications, especially speech recognition …

Transfer learning for speech and language processing

D Wang, TF Zheng - 2015 Asia-Pacific Signal and Information …, 2015 - ieeexplore.ieee.org
Transfer learning is a vital technique that generalizes models trained for one setting or task
to other settings or tasks. For example in speech recognition, an acoustic model trained for …

Google usm: Scaling automatic speech recognition beyond 100 languages

Y Zhang, W Han, J Qin, Y Wang, A Bapna… - arxiv preprint arxiv …, 2023 - arxiv.org
We introduce the Universal Speech Model (USM), a single large model that performs
automatic speech recognition (ASR) across 100+ languages. This is achieved by pre …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Bigssl: Exploring the frontier of large-scale semi-supervised learning for automatic speech recognition

Y Zhang, DS Park, W Han, J Qin… - IEEE Journal of …, 2022 - ieeexplore.ieee.org
We summarize the results of a host of efforts using giant automatic speech recognition (ASR)
models pre-trained using large, diverse unlabeled datasets containing approximately a …

Pushing the limits of semi-supervised learning for automatic speech recognition

Y Zhang, J Qin, DS Park, W Han, CC Chiu… - arxiv preprint arxiv …, 2020 - arxiv.org
We employ a combination of recent developments in semi-supervised learning for automatic
speech recognition to obtain state-of-the-art results on LibriSpeech utilizing the unlabeled …

Improved noisy student training for automatic speech recognition

DS Park, Y Zhang, Y Jia, W Han, CC Chiu, B Li… - arxiv preprint arxiv …, 2020 - arxiv.org
Recently, a semi-supervised learning method known as" noisy student training" has been
shown to improve image classification performance of deep networks significantly. Noisy …

Unsupervised speech representation learning using wavenet autoencoders

J Chorowski, RJ Weiss, S Bengio… - … /ACM transactions on …, 2019 - ieeexplore.ieee.org
We consider the task of unsupervised extraction of meaningful latent representations of
speech by applying autoencoding neural networks to speech waveforms. The goal is to …

Deep learning: methods and applications

L Deng, D Yu - Foundations and trends® in signal processing, 2014 - nowpublishers.com
This monograph provides an overview of general deep learning methodology and its
applications to a variety of signal and information processing tasks. The application areas …

Improving automatic speech recognition performance for low-resource languages with self-supervised models

J Zhao, WQ Zhang - IEEE Journal of Selected Topics in Signal …, 2022 - ieeexplore.ieee.org
Speech self-supervised learning has attracted much attention due to its promising
performance in multiple downstream tasks, and has become a new growth engine for …