Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Speech recognition using deep neural networks: A systematic review
Over the past decades, a tremendous amount of research has been done on the use of
machine learning for speech processing applications, especially speech recognition …
machine learning for speech processing applications, especially speech recognition …
Transfer learning for speech and language processing
Transfer learning is a vital technique that generalizes models trained for one setting or task
to other settings or tasks. For example in speech recognition, an acoustic model trained for …
to other settings or tasks. For example in speech recognition, an acoustic model trained for …
Google usm: Scaling automatic speech recognition beyond 100 languages
We introduce the Universal Speech Model (USM), a single large model that performs
automatic speech recognition (ASR) across 100+ languages. This is achieved by pre …
automatic speech recognition (ASR) across 100+ languages. This is achieved by pre …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Bigssl: Exploring the frontier of large-scale semi-supervised learning for automatic speech recognition
We summarize the results of a host of efforts using giant automatic speech recognition (ASR)
models pre-trained using large, diverse unlabeled datasets containing approximately a …
models pre-trained using large, diverse unlabeled datasets containing approximately a …
Pushing the limits of semi-supervised learning for automatic speech recognition
We employ a combination of recent developments in semi-supervised learning for automatic
speech recognition to obtain state-of-the-art results on LibriSpeech utilizing the unlabeled …
speech recognition to obtain state-of-the-art results on LibriSpeech utilizing the unlabeled …
Improved noisy student training for automatic speech recognition
Recently, a semi-supervised learning method known as" noisy student training" has been
shown to improve image classification performance of deep networks significantly. Noisy …
shown to improve image classification performance of deep networks significantly. Noisy …
Unsupervised speech representation learning using wavenet autoencoders
We consider the task of unsupervised extraction of meaningful latent representations of
speech by applying autoencoding neural networks to speech waveforms. The goal is to …
speech by applying autoencoding neural networks to speech waveforms. The goal is to …
Deep learning: methods and applications
This monograph provides an overview of general deep learning methodology and its
applications to a variety of signal and information processing tasks. The application areas …
applications to a variety of signal and information processing tasks. The application areas …
Improving automatic speech recognition performance for low-resource languages with self-supervised models
Speech self-supervised learning has attracted much attention due to its promising
performance in multiple downstream tasks, and has become a new growth engine for …
performance in multiple downstream tasks, and has become a new growth engine for …