A survey on differential privacy for unstructured data content
Huge amounts of unstructured data including image, video, audio, and text are ubiquitously
generated and shared, and it is a challenge to protect sensitive personal information in …
generated and shared, and it is a challenge to protect sensitive personal information in …
Deep learning methods in speaker recognition: a review
This paper summarizes the applied deep learning practices in the field of speaker
recognition, both verification and identification. Speaker recognition has been a widely used …
recognition, both verification and identification. Speaker recognition has been a widely used …
The VoicePrivacy 2024 Challenge Evaluation Plan
The task of the challenge is to develop a voice anonymization system for speech data which
conceals the speaker's voice identity while protecting linguistic content and emotional states …
conceals the speaker's voice identity while protecting linguistic content and emotional states …
Introducing the VoicePrivacy initiative
The VoicePrivacy initiative aims to promote the development of privacy preservation tools for
speech technology by gathering a new community to define the tasks of interest and the …
speech technology by gathering a new community to define the tasks of interest and the …
Speaker anonymisation using the McAdams coefficient
Anonymisation has the goal of manipulating speech signals in order to degrade the
reliability of automatic approaches to speaker recognition, while preserving other aspects of …
reliability of automatic approaches to speaker recognition, while preserving other aspects of …
Evaluating voice conversion-based privacy protection against informed attackers
BML Srivastava, N Vauquier… - ICASSP 2020-2020 …, 2020 - ieeexplore.ieee.org
Speech data conveys sensitive speaker attributes like identity or accent. With a small
amount of found data, such attributes can be inferred and exploited for malicious purposes …
amount of found data, such attributes can be inferred and exploited for malicious purposes …
[HTML][HTML] X-vector anonymization using autoencoders and adversarial training for preserving speech privacy
The rapid increase in web services and mobile apps, which collect personal data from users,
has also increased the risk that their privacy may be severely compromised. In particular, the …
has also increased the risk that their privacy may be severely compromised. In particular, the …
{V-Cloak}: Intelligibility-, Naturalness-& {Timbre-Preserving}{Real-Time} Voice Anonymization
Voice data generated on instant messaging or social media applications contains unique
user voiceprints that may be abused by malicious adversaries for identity inference or …
user voiceprints that may be abused by malicious adversaries for identity inference or …
The VoicePrivacy 2022 Challenge: Progress and perspectives in voice anonymisation
The VoicePrivacy Challenge promotes the development of voice anonymisation solutions for
speech technology. In this paper we present a systematic overview and analysis of the …
speech technology. In this paper we present a systematic overview and analysis of the …
Design choices for x-vector based speaker anonymization
The recently proposed x-vector based anonymization scheme converts any input voice into
that of a random pseudo-speaker. In this paper, we present a flexible pseudo-speaker …
that of a random pseudo-speaker. In this paper, we present a flexible pseudo-speaker …