Large language models for software engineering: A systematic literature review

X Hou, Y Zhao, Y Liu, Z Yang, K Wang, L Li… - ACM Transactions on …, 2024 - dl.acm.org
Large Language Models (LLMs) have significantly impacted numerous domains, including
Software Engineering (SE). Many recent publications have explored LLMs applied to …

Deep learning based vulnerability detection: Are we there yet?

S Chakraborty, R Krishna, Y Ding… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Automated detection of software vulnerabilities is a fundamental problem in software
security. Existing program analysis techniques either suffer from high false positives or false …

Codet5+: Open code large language models for code understanding and generation

Y Wang, H Le, AD Gotmare, NDQ Bui, J Li… - arxiv preprint arxiv …, 2023 - arxiv.org
Large language models (LLMs) pretrained on vast source code have achieved prominent
progress in code intelligence. However, existing code LLMs have two main limitations in …

Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation

Y Wang, W Wang, S Joty, SCH Hoi - arxiv preprint arxiv:2109.00859, 2021 - arxiv.org
Pre-trained models for Natural Languages (NL) like BERT and GPT have been recently
shown to transfer well to Programming Languages (PL) and largely benefit a broad set of …

Unified pre-training for program understanding and generation

WU Ahmad, S Chakraborty, B Ray… - arxiv preprint arxiv …, 2021 - arxiv.org
Code summarization and generation empower conversion between programming language
(PL) and natural language (NL), while code translation avails the migration of legacy code …

Codexglue: A machine learning benchmark dataset for code understanding and generation

S Lu, D Guo, S Ren, J Huang, A Svyatkovskiy… - arxiv preprint arxiv …, 2021 - arxiv.org
Benchmark datasets have a significant impact on accelerating research in programming
language tasks. In this paper, we introduce CodeXGLUE, a benchmark dataset to foster …

Linevul: A transformer-based line-level vulnerability prediction

M Fu, C Tantithamthavorn - … of the 19th International Conference on …, 2022 - dl.acm.org
Software vulnerabilities are prevalent in software systems, causing a variety of problems
including deadlock, information loss, or system failures. Thus, early predictions of software …

LineVD: statement-level vulnerability detection using graph neural networks

D Hin, A Kan, H Chen, MA Babar - Proceedings of the 19th international …, 2022 - dl.acm.org
Current machine-learning based software vulnerability detection methods are primarily
conducted at the function-level. However, a key limitation of these methods is that they do …

Combining graph neural networks with expert knowledge for smart contract vulnerability detection

Z Liu, P Qian, X Wang, Y Zhuang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Smart contract vulnerability detection draws extensive attention in recent years due to the
substantial losses caused by hacker attacks. Existing efforts for contract security analysis …

Networking architecture and key supporting technologies for human digital twin in personalized healthcare: A comprehensive survey

J Chen, C Yi, SD Okegbile, J Cai… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
Digital twin (DT), referring to a promising technique to digitally and accurately represent
actual physical entities, has attracted explosive interests from both academia and industry …