Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Deep learning in environmental remote sensing: Achievements and challenges
Various forms of machine learning (ML) methods have historically played a valuable role in
environmental remote sensing research. With an increasing amount of “big data” from earth …
environmental remote sensing research. With an increasing amount of “big data” from earth …
[HTML][HTML] Deep learning in remote sensing applications: A meta-analysis and review
Deep learning (DL) algorithms have seen a massive rise in popularity for remote-sensing
image analysis over the past few years. In this study, the major DL concepts pertinent to …
image analysis over the past few years. In this study, the major DL concepts pertinent to …
Rainfall–runoff modelling using long short-term memory (LSTM) networks
Rainfall–runoff modelling is one of the key challenges in the field of hydrology. Various
approaches exist, ranging from physically based over conceptual to fully data-driven …
approaches exist, ranging from physically based over conceptual to fully data-driven …
Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model
Water quality monitoring is an important component of water resources management. In
order to predict two water quality variables, namely dissolved oxygen (DO; mg/L) and …
order to predict two water quality variables, namely dissolved oxygen (DO; mg/L) and …
A transdisciplinary review of deep learning research and its relevance for water resources scientists
C Shen - Water Resources Research, 2018 - Wiley Online Library
Deep learning (DL), a new generation of artificial neural network research, has transformed
industries, daily lives, and various scientific disciplines in recent years. DL represents …
industries, daily lives, and various scientific disciplines in recent years. DL represents …
Machine learning for hydrologic sciences: An introductory overview
The hydrologic community has experienced a surge in interest in machine learning in recent
years. This interest is primarily driven by rapidly growing hydrologic data repositories, as …
years. This interest is primarily driven by rapidly growing hydrologic data repositories, as …
Machine learning in geo-and environmental sciences: From small to large scale
In recent years significant breakthroughs in exploring big data, recognition of complex
patterns, and predicting intricate variables have been made. One efficient way of analyzing …
patterns, and predicting intricate variables have been made. One efficient way of analyzing …
Could machine learning break the convection parameterization deadlock?
Representing unresolved moist convection in coarse‐scale climate models remains one of
the main bottlenecks of current climate simulations. Many of the biases present with …
the main bottlenecks of current climate simulations. Many of the biases present with …
A deep learning method for bias correction of ECMWF 24–240 h forecasts
L Han, M Chen, K Chen, H Chen, Y Zhang, B Lu… - … in Atmospheric Sciences, 2021 - Springer
Correcting the forecast bias of numerical weather prediction models is important for severe
weather warnings. The refined grid forecast requires direct correction on gridded forecast …
weather warnings. The refined grid forecast requires direct correction on gridded forecast …
Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling
S Razavi - Environmental Modelling & Software, 2021 - Elsevier
Recent breakthroughs in artificial intelligence (AI), and particularly in deep learning (DL),
have created tremendous excitement and opportunities in the earth and environmental …
have created tremendous excitement and opportunities in the earth and environmental …