MIP formulations for induced graph optimization problems: a tutorial

RA Melo, CC Ribeiro - International Transactions in …, 2023 - Wiley Online Library
Given a graph G=(V, E) G=(V,E) and a subset of its vertices V′⊆ VV^′⊆V, the subgraph
induced by V′ V^′ in G is that with vertex set V′ V^′ and edge set E′ E^′ formed by …

A biased random-key genetic algorithm for the minimum quasi-clique partitioning problem

RA Melo, CC Ribeiro, JA Riveaux - Annals of Operations Research, 2023 - Springer
Abstract Let G=(V, E) be a graph with vertex set V and edge set E, and consider γ∈[0, 1) to
be a real constant. A γ-clique (or quasi-clique) is a subset V′⊆ V inducing a subgraph of G …

Obtaining the Grundy chromatic number: How bad can my greedy heuristic coloring be?

MC Silva, RA Melo, MGC Resende, MC Santos… - Computers & Operations …, 2024 - Elsevier
Given a simple undirected graph G, its Grundy chromatic number Γ (G)(or Grundy number)
defines the worst-case behavior for the well-known and widely-used greedy first-fit coloring …

The connected Grundy coloring problem: Formulations and a local-search enhanced biased random-key genetic algorithm

MC Silva, RA Melo, MGC Resende, MC Santos… - arxiv preprint arxiv …, 2024 - arxiv.org
Given a graph G=(V, E), a connected Grundy coloring is a proper vertex coloring that can be
obtained by a first-fit heuristic on a connected vertex sequence. A first-fit coloring heuristic is …

Application of biased random-key genetic algorithm and formulations for the Grundy coloring problem and the connected Grundy coloring problem

MC Silva - 2023 - repositorio.ufba.br
Dado um grafo G, seu número de Grundy Γ (G) define o comportamento de pior caso para a
conhecida e amplamente utilizada heurística de coloração gulosa first-fit. Mais …