Predictive coding: a theoretical and experimental review

B Millidge, A Seth, CL Buckley - arxiv preprint arxiv:2107.12979, 2021 - arxiv.org
Predictive coding offers a potentially unifying account of cortical function--postulating that the
core function of the brain is to minimize prediction errors with respect to a generative model …

Backpropagation-based learning techniques for deep spiking neural networks: A survey

M Dampfhoffer, T Mesquida… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
With the adoption of smart systems, artificial neural networks (ANNs) have become
ubiquitous. Conventional ANN implementations have high energy consumption, limiting …

Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence

W Fang, Y Chen, J Ding, Z Yu, T Masquelier… - Science …, 2023 - science.org
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic
chips with high energy efficiency by introducing neural dynamics and spike properties. As …

Training spiking neural networks using lessons from deep learning

JK Eshraghian, M Ward, EO Neftci… - Proceedings of the …, 2023 - ieeexplore.ieee.org
The brain is the perfect place to look for inspiration to develop more efficient neural
networks. The inner workings of our synapses and neurons provide a glimpse at what the …

Advancing neuromorphic computing with loihi: A survey of results and outlook

M Davies, A Wild, G Orchard… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep artificial neural networks apply principles of the brain's information processing that led
to breakthroughs in machine learning spanning many problem domains. Neuromorphic …

Incorporating learnable membrane time constant to enhance learning of spiking neural networks

W Fang, Z Yu, Y Chen, T Masquelier… - Proceedings of the …, 2021 - openaccess.thecvf.com
Abstract Spiking Neural Networks (SNNs) have attracted enormous research interest due to
temporal information processing capability, low power consumption, and high biological …

Deep residual learning in spiking neural networks

W Fang, Z Yu, Y Chen, T Huang… - Advances in Neural …, 2021 - proceedings.neurips.cc
Abstract Deep Spiking Neural Networks (SNNs) present optimization difficulties for gradient-
based approaches due to discrete binary activation and complex spatial-temporal dynamics …

Temporal effective batch normalization in spiking neural networks

C Duan, J Ding, S Chen, Z Yu… - Advances in Neural …, 2022 - proceedings.neurips.cc
Abstract Spiking Neural Networks (SNNs) are promising in neuromorphic hardware owing to
utilizing spatio-temporal information and sparse event-driven signal processing. However, it …

Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks

B Yin, F Corradi, SM Bohté - Nature Machine Intelligence, 2021 - nature.com
Inspired by detailed modelling of biological neurons, spiking neural networks (SNNs) are
investigated as biologically plausible and high-performance models of neural computation …

Temporal-wise attention spiking neural networks for event streams classification

M Yao, H Gao, G Zhao, D Wang… - Proceedings of the …, 2021 - openaccess.thecvf.com
How to effectively and efficiently deal with spatio-temporal event streams, where the events
are generally sparse and non-uniform and have the us temporal resolution, is of great value …