Weakly supervised object localization and detection: A survey

D Zhang, J Han, G Cheng… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
As an emerging and challenging problem in the computer vision community, weakly
supervised object localization and detection plays an important role for develo** new …

A survey on instance segmentation: state of the art

AM Hafiz, GM Bhat - International journal of multimedia information …, 2020 - Springer
Object detection or localization is an incremental step in progression from coarse to fine
digital image inference. It not only provides the classes of the image objects, but also …

Oneformer: One transformer to rule universal image segmentation

J Jain, J Li, MT Chiu, A Hassani… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Universal Image Segmentation is not a new concept. Past attempts to unify image
segmentation include scene parsing, panoptic segmentation, and, more recently, new …

Convolutions die hard: Open-vocabulary segmentation with single frozen convolutional clip

Q Yu, J He, X Deng, X Shen… - Advances in Neural …, 2023 - proceedings.neurips.cc
Open-vocabulary segmentation is a challenging task requiring segmenting and recognizing
objects from an open set of categories in diverse environments. One way to address this …

Per-pixel classification is not all you need for semantic segmentation

B Cheng, A Schwing, A Kirillov - Advances in neural …, 2021 - proceedings.neurips.cc
Modern approaches typically formulate semantic segmentation as a per-pixel classification
task, while instance-level segmentation is handled with an alternative mask classification …

Bottleneck transformers for visual recognition

A Srinivas, TY Lin, N Parmar, J Shlens… - Proceedings of the …, 2021 - openaccess.thecvf.com
We present BoTNet, a conceptually simple yet powerful backbone architecture that
incorporates self-attention for multiple computer vision tasks including image classification …

Simple copy-paste is a strong data augmentation method for instance segmentation

G Ghiasi, Y Cui, A Srinivas, R Qian… - Proceedings of the …, 2021 - openaccess.thecvf.com
Building instance segmentation models that are data-efficient and can handle rare object
categories is an important challenge in computer vision. Leveraging data augmentations is a …

Cost aggregation with 4d convolutional swin transformer for few-shot segmentation

S Hong, S Cho, J Nam, S Lin, S Kim - European Conference on Computer …, 2022 - Springer
This paper presents a novel cost aggregation network, called Volumetric Aggregation with
Transformers (VAT), for few-shot segmentation. The use of transformers can benefit …

Hypercorrelation squeeze for few-shot segmentation

J Min, D Kang, M Cho - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Few-shot semantic segmentation aims at learning to segment a target object from a query
image using only a few annotated support images of the target class. This challenging task …

Prior guided feature enrichment network for few-shot segmentation

Z Tian, H Zhao, M Shu, Z Yang, R Li… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve
good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation …