Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Weakly supervised object localization and detection: A survey
As an emerging and challenging problem in the computer vision community, weakly
supervised object localization and detection plays an important role for develo** new …
supervised object localization and detection plays an important role for develo** new …
A survey on instance segmentation: state of the art
Object detection or localization is an incremental step in progression from coarse to fine
digital image inference. It not only provides the classes of the image objects, but also …
digital image inference. It not only provides the classes of the image objects, but also …
Oneformer: One transformer to rule universal image segmentation
Abstract Universal Image Segmentation is not a new concept. Past attempts to unify image
segmentation include scene parsing, panoptic segmentation, and, more recently, new …
segmentation include scene parsing, panoptic segmentation, and, more recently, new …
Convolutions die hard: Open-vocabulary segmentation with single frozen convolutional clip
Open-vocabulary segmentation is a challenging task requiring segmenting and recognizing
objects from an open set of categories in diverse environments. One way to address this …
objects from an open set of categories in diverse environments. One way to address this …
Per-pixel classification is not all you need for semantic segmentation
Modern approaches typically formulate semantic segmentation as a per-pixel classification
task, while instance-level segmentation is handled with an alternative mask classification …
task, while instance-level segmentation is handled with an alternative mask classification …
Bottleneck transformers for visual recognition
We present BoTNet, a conceptually simple yet powerful backbone architecture that
incorporates self-attention for multiple computer vision tasks including image classification …
incorporates self-attention for multiple computer vision tasks including image classification …
Simple copy-paste is a strong data augmentation method for instance segmentation
Building instance segmentation models that are data-efficient and can handle rare object
categories is an important challenge in computer vision. Leveraging data augmentations is a …
categories is an important challenge in computer vision. Leveraging data augmentations is a …
Cost aggregation with 4d convolutional swin transformer for few-shot segmentation
This paper presents a novel cost aggregation network, called Volumetric Aggregation with
Transformers (VAT), for few-shot segmentation. The use of transformers can benefit …
Transformers (VAT), for few-shot segmentation. The use of transformers can benefit …
Hypercorrelation squeeze for few-shot segmentation
Few-shot semantic segmentation aims at learning to segment a target object from a query
image using only a few annotated support images of the target class. This challenging task …
image using only a few annotated support images of the target class. This challenging task …
Prior guided feature enrichment network for few-shot segmentation
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve
good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation …
good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation …