How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …

Scaffold: Stochastic controlled averaging for federated learning

SP Karimireddy, S Kale, M Mohri… - International …, 2020 - proceedings.mlr.press
Federated learning is a key scenario in modern large-scale machine learning where the
data remains distributed over a large number of clients and the task is to learn a centralized …

Deep learning with differential privacy

M Abadi, A Chu, I Goodfellow, HB McMahan… - Proceedings of the …, 2016 - dl.acm.org
Machine learning techniques based on neural networks are achieving remarkable results in
a wide variety of domains. Often, the training of models requires large, representative …

The algorithmic foundations of differential privacy

C Dwork, A Roth - Foundations and Trends® in Theoretical …, 2014 - nowpublishers.com
The problem of privacy-preserving data analysis has a long history spanning multiple
disciplines. As electronic data about individuals becomes increasingly detailed, and as …

Differentially private learning needs better features (or much more data)

F Tramer, D Boneh - arxiv preprint arxiv:2011.11660, 2020 - arxiv.org
We demonstrate that differentially private machine learning has not yet reached its" AlexNet
moment" on many canonical vision tasks: linear models trained on handcrafted features …

Memguard: Defending against black-box membership inference attacks via adversarial examples

J Jia, A Salem, M Backes, Y Zhang… - Proceedings of the 2019 …, 2019 - dl.acm.org
In a membership inference attack, an attacker aims to infer whether a data sample is in a
target classifier's training dataset or not. Specifically, given a black-box access to the target …

Private empirical risk minimization: Efficient algorithms and tight error bounds

R Bassily, A Smith, A Thakurta - 2014 IEEE 55th annual …, 2014 - ieeexplore.ieee.org
Convex empirical risk minimization is a basic tool in machine learning and statistics. We
provide new algorithms and matching lower bounds for differentially private convex …

Practical and private (deep) learning without sampling or shuffling

P Kairouz, B McMahan, S Song… - International …, 2021 - proceedings.mlr.press
We consider training models with differential privacy (DP) using mini-batch gradients. The
existing state-of-the-art, Differentially Private Stochastic Gradient Descent (DP-SGD) …

Privbayes: Private data release via bayesian networks

J Zhang, G Cormode, CM Procopiuc… - ACM Transactions on …, 2017 - dl.acm.org
Privacy-preserving data publishing is an important problem that has been the focus of
extensive study. The state-of-the-art solution for this problem is differential privacy, which …

Securing Personally Identifiable Information: A Survey of SOTA Techniques, and a Way Forward

I Makhdoom, M Abolhasan, J Lipman, N Shariati… - IEEE …, 2024 - ieeexplore.ieee.org
The current age is witnessing an unprecedented dependence on data originating from
humans through the devices that comprise the Internet of Things. The data collected by …