GAN-based anomaly detection: A review

X **a, X Pan, N Li, X He, L Ma, X Zhang, N Ding - Neurocomputing, 2022 - Elsevier
Supervised learning algorithms have shown limited use in the field of anomaly detection due
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …

Deep learning for unsupervised anomaly localization in industrial images: A survey

X Tao, X Gong, X Zhang, S Yan… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Currently, deep learning-based visual inspection has been highly successful with the help of
supervised learning methods. However, in real industrial scenarios, the scarcity of defect …

Simplenet: A simple network for image anomaly detection and localization

Z Liu, Y Zhou, Y Xu, Z Wang - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
We propose a simple and application-friendly network (called SimpleNet) for detecting and
localizing anomalies. SimpleNet consists of four components:(1) a pre-trained Feature …

Towards total recall in industrial anomaly detection

K Roth, L Pemula, J Zepeda… - Proceedings of the …, 2022 - openaccess.thecvf.com
Being able to spot defective parts is a critical component in large-scale industrial
manufacturing. A particular challenge that we address in this work is the cold-start problem …

Cutpaste: Self-supervised learning for anomaly detection and localization

CL Li, K Sohn, J Yoon, T Pfister - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We aim at constructing a high performance model for defect detection that detects unknown
anomalous patterns of an image without anomalous data. To this end, we propose a two …

Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows

D Gudovskiy, S Ishizaka… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Unsupervised anomaly detection with localization has many practical applications when
labeling is infeasible and, moreover, when anomaly examples are completely missing in the …

Winclip: Zero-/few-shot anomaly classification and segmentation

J Jeong, Y Zou, T Kim, D Zhang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Visual anomaly classification and segmentation are vital for automating industrial quality
inspection. The focus of prior research in the field has been on training custom models for …

Multimodal industrial anomaly detection via hybrid fusion

Y Wang, J Peng, J Zhang, R Yi… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract 2D-based Industrial Anomaly Detection has been widely discussed, however,
multimodal industrial anomaly detection based on 3D point clouds and RGB images still has …

Self-supervised predictive convolutional attentive block for anomaly detection

NC Ristea, N Madan, RT Ionescu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Anomaly detection is commonly pursued as a one-class classification problem, where
models can only learn from normal training samples, while being evaluated on both normal …

Fully convolutional cross-scale-flows for image-based defect detection

M Rudolph, T Wehrbein… - Proceedings of the …, 2022 - openaccess.thecvf.com
In industrial manufacturing processes, errors frequently occur at unpredictable times and in
unknown manifestations. We tackle this problem, known as automatic defect detection …