Signal propagation in complex networks
Signal propagation in complex networks drives epidemics, is responsible for information
going viral, promotes trust and facilitates moral behavior in social groups, enables the …
going viral, promotes trust and facilitates moral behavior in social groups, enables the …
Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence
Convolutional neural networks (CNNs) have received widespread attention due to their
powerful modeling capabilities and have been successfully applied in natural language …
powerful modeling capabilities and have been successfully applied in natural language …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
A survey on deep semi-supervised learning
Deep semi-supervised learning is a fast-growing field with a range of practical applications.
This paper provides a comprehensive survey on both fundamentals and recent advances in …
This paper provides a comprehensive survey on both fundamentals and recent advances in …
Graph learning: A survey
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …
data. Graph data can be found in a broad spectrum of application domains such as social …
A comprehensive survey on deep clustering: Taxonomy, challenges, and future directions
Clustering is a fundamental machine learning task, which aim at assigning instances into
groups so that similar samples belong to the same cluster while dissimilar samples belong …
groups so that similar samples belong to the same cluster while dissimilar samples belong …
A survey on semi-supervised learning
JE Van Engelen, HH Hoos - Machine learning, 2020 - Springer
Semi-supervised learning is the branch of machine learning concerned with using labelled
as well as unlabelled data to perform certain learning tasks. Conceptually situated between …
as well as unlabelled data to perform certain learning tasks. Conceptually situated between …
Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding
A large number of real-world graphs or networks are inherently heterogeneous, involving a
diversity of node types and relation types. Heterogeneous graph embedding is to embed …
diversity of node types and relation types. Heterogeneous graph embedding is to embed …
A survey on heterogeneous graph embedding: methods, techniques, applications and sources
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …